260 research outputs found

    The pulsations and the dynamical stability of gaseous masses in uniform rotation

    Get PDF
    A variational principle, applicable to axisymmetric oscillations of uniformly rotating axisymmetric configurations, is established On the assumption that the Lagrangian displacement (describing the oscillation) at any point is normal to the level surface (of constant total potential) through that point, it is shown how the variational expression, for the frequencies of oscillation, can be reduced to simple quadratures. The reduction is explicitly carried out for certain stratifications of special interest. Some new results on the oscillations of slowly rotating configurations are included; and a number of related observations on their stability are also made

    Parabolic resonances and instabilities in near-integrable two degrees of freedom Hamiltonian flows

    Full text link
    When an integrable two-degrees-of-freedom Hamiltonian system possessing a circle of parabolic fixed points is perturbed, a parabolic resonance occurs. It is proved that its occurrence is generic for one parameter families (co-dimension one phenomenon) of near-integrable, t.d.o. systems. Numerical experiments indicate that the motion near a parabolic resonance exhibits new type of chaotic behavior which includes instabilities in some directions and long trapping times in others. Moreover, in a degenerate case, near a {\it flat parabolic resonance}, large scale instabilities appear. A model arising from an atmospherical study is shown to exhibit flat parabolic resonance. This supplies a simple mechanism for the transport of particles with {\it small} (i.e. atmospherically relevant) initial velocities from the vicinity of the equator to high latitudes. A modification of the model which allows the development of atmospherical jets unfolds the degeneracy, yet traces of the flat instabilities are clearly observed

    Disk Planet Interactions and Early Evolution in Young Planetary Systems

    Full text link
    We study and review disk protoplanet interactions using local shearing box simulations. These suffer the disadvantage of having potential artefacts arising from periodic boundary conditions but the advantage, when compared to global simulations, of being able to capture much of the dynamics close to the protoplanet at high resolution for low computational cost. Cases with and without self sustained MHD turbulence are considered. The conditions for gap formation and the transition from type I migration are investigated and found to depend on whether the single parameter M_p R^3/(M_* H^3), with M_p, M_*, R and H being the protoplanet mass, the central mass, the orbital radius and the disk semi-thickness respectively exceeds a number of order unity. We also investigate the coorbital torques experienced by a moving protoplanet in an inviscid disk. This is done by demonstrating the equivalence of the problem for a moving protoplanet to one where the protoplanet is in a fixed orbit which the disk material flows through radially as a result of the action of an appropriate external torque. For sustainable coorbital torques to be realized a quasi steady state must be realized in which the planet migrates through the disk without accreting significant mass. In that case although there is sensitivity to computational parameters, in agreement with earlier work by Masset & Papaloizou (2003) based on global simulations, the coorbital torques are proportional to the migration speed and result in a positive feedback on the migration, enhancing it and potentially leading to a runaway. This could lead to a fast migration for protoplanets in the Saturn mass range in massive disks and may be relevant to the mass period correlation for extrasolar planets which gives a preponderance of sub Jovian masses at short orbital period.Comment: To appear in Celestial Mechanics and Dynamical Astronomy (with higher resolution figures

    Phase Coupling of a Circadian Neuropeptide With Rest/Activity Rhythms Detected Using a Membrane-Tethered Spider Toxin

    Get PDF
    Drosophila clock neurons are self-sustaining cellular oscillators that rely on negative transcriptional feedback to keep circadian time. Proper regulation of organismal rhythms of physiology and behavior requires coordination of the oscillations of individual clock neurons within the circadian control network. Over the last decade, it has become clear that a key mechanism for intercellular communication in the circadian network is signaling between a subset of clock neurons that secrete the neuropeptide pigment dispersing factor (PDF) and clock neurons that possess its G protein-coupled receptor (PDFR). Furthermore, the specific hypothesis has been proposed that PDF-secreting clock neurons entrain the phase of organismal rhythms, and the cellular oscillations of other clock neurons, via the temporal patterning of secreted PDF signals. In order to test this hypothesis, we have devised a novel technique for altering the phase relationship between circadian transcriptional feedback oscillation and PDF secretion by using an ion channel–directed spider toxin to modify voltage-gated Na+ channel inactivation in vivo. This technique relies on the previously reported “tethered-toxin” technology for cell-autonomous modulation of ionic conductances via heterologous expression of subtype-specific peptide ion channel toxins as chimeric fusion proteins tethered to the plasma membrane with a glycosylphosphatidylinositol (GPI) anchor. We demonstrate for the first time, to our knowledge, the utility of the tethered-toxin technology in a transgenic animal, validating four different tethered spider toxin ion channel modifiers for use in Drosophila. Focusing on one of these toxins, we show that GPI-tethered Australian funnel-web spider toxin δ-ACTX-Hv1a inhibits Drosophila para voltage-gated Na+ channel inactivation when coexpressed in Xenopus oocytes. Transgenic expression of membrane-tethered δ-ACTX-Hv1a in vivo in the PDF-secreting subset of clock neurons induces rhythmic action potential bursts and depolarized plateau potentials. These in vitro and in vivo electrophysiological effects of membrane-tethered δ-ACTX-Hv1a are consistent with the effects of soluble δ-ACTX-Hv1a purified from venom on Na+ channel physiological and biophysical properties in cockroach neurons. Membrane-tethered δ-ACTX-Hv1a expression in the PDF-secreting subset of clock neurons induces an approximately 4-h phase advance of the rhythm of PDF accumulation in their terminals relative to both the phase of the day:night cycle and the phase of the circadian transcriptional feedback loops. As a consequence, the morning anticipatory peak of locomotor activity preceding dawn, which has been shown to be driven by the clocks of the PDF-secreting subset of clock neurons, phase advances coordinately with the phase of the PDF rhythm of the PDF-secreting clock neurons, rather than maintaining its phase relationship with the day:night cycle and circadian transcriptional feedback loops. These results (1) validate the tethered-toxin technology for cell-autonomous modulation of ion channel biophysical properties in vivo in transgenic Drosophila, (2) demonstrate that the kinetics of para Na+ channel inactivation is a key parameter for determining the phase relationship between circadian transcriptional feedback oscillation and PDF secretion, and (3) provide experimental support for the hypothesis that PDF-secreting clock neurons entrain the phase of organismal rhythms via the temporal patterning of secreted PDF signals

    Challenges of maintaining research protocol fidelity in a clinical care setting: A qualitative study of the experiences and views of patients and staff participating in a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trial research has predominantly focused on patient and staff understandings of trial concepts and/or motivations for taking part, rather than why treatment recommendations may or may not be followed during trial delivery. This study sought to understand why there was limited attainment of the glycaemic target (HbA<sub>1c </sub>≤6.5%) among patients who participated in the Treating to Target in Type 2 Diabetes Trial (4-T). The objective was to inform interpretation of trial outcomes and provide recommendations for future trial delivery.</p> <p>Methods</p> <p>In-depth interviews were conducted with 45 patients and 21 health professionals recruited from 11 of 58 trial centres in the UK. Patients were broadly representative of those in the main trial in terms of treatment allocation, demographics and glycaemic control. Both physicians and research nurses were interviewed.</p> <p>Results</p> <p>Most patients were committed to taking insulin as recommended by 4-T staff. To avoid hypoglycaemia, patients occasionally altered or skipped insulin doses, normally in consultation with staff. Patients were usually unaware of the trial's glycaemic target. Positive staff feedback could lead patients to believe they had been 'successful' trial participants even when their HbA<sub>1c </sub>exceeded 6.5%. While some staff felt that the 4-T automated insulin dose adjustment algorithm had increased their confidence to prescribe larger insulin doses than in routine clinical practice, all described situations where they had not followed its recommendations. Staff regarded the application of a 'one size fits all' glycaemic target during the trial as contradicting routine clinical practice where they would tailor treatments to individuals. Staff also expressed concerns that 'tight' glycaemic control might impose an unacceptably high risk of hypoglycaemia, thus compromising trust and safety, especially amongst older patients. To address these concerns, staff tended to adapt the trial protocol to align it with their clinical practices and experiences.</p> <p>Conclusions</p> <p>To understand trial findings, foster attainment of endpoints, and promote protocol fidelity, it may be necessary to look beyond individual patient characteristics and experiences. Specifically, the context of trial delivery, the impact of staff involvement, and the difficulties staff may encounter in balancing competing 'clinical' and 'research' roles and responsibilities may need to be considered and addressed.</p

    Oxr1 Is Essential for Protection against Oxidative Stress-Induced Neurodegeneration

    Get PDF
    Oxidative stress is a common etiological feature of neurological disorders, although the pathways that govern defence against reactive oxygen species (ROS) in neurodegeneration remain unclear. We have identified the role of oxidation resistance 1 (Oxr1) as a vital protein that controls the sensitivity of neuronal cells to oxidative stress; mice lacking Oxr1 display cerebellar neurodegeneration, and neurons are less susceptible to exogenous stress when the gene is over-expressed. A conserved short isoform of Oxr1 is also sufficient to confer this neuroprotective property both in vitro and in vivo. In addition, biochemical assays indicate that Oxr1 itself is susceptible to cysteine-mediated oxidation. Finally we show up-regulation of Oxr1 in both human and pre-symptomatic mouse models of amyotrophic lateral sclerosis, indicating that Oxr1 is potentially a novel neuroprotective factor in neurodegenerative disease

    A Computational Approach to Finding Novel Targets for Existing Drugs

    Get PDF
    Repositioning existing drugs for new therapeutic uses is an efficient approach to drug discovery. We have developed a computational drug repositioning pipeline to perform large-scale molecular docking of small molecule drugs against protein drug targets, in order to map the drug-target interaction space and find novel interactions. Our method emphasizes removing false positive interaction predictions using criteria from known interaction docking, consensus scoring, and specificity. In all, our database contains 252 human protein drug targets that we classify as reliable-for-docking as well as 4621 approved and experimental small molecule drugs from DrugBank. These were cross-docked, then filtered through stringent scoring criteria to select top drug-target interactions. In particular, we used MAPK14 and the kinase inhibitor BIM-8 as examples where our stringent thresholds enriched the predicted drug-target interactions with known interactions up to 20 times compared to standard score thresholds. We validated nilotinib as a potent MAPK14 inhibitor in vitro (IC50 40 nM), suggesting a potential use for this drug in treating inflammatory diseases. The published literature indicated experimental evidence for 31 of the top predicted interactions, highlighting the promising nature of our approach. Novel interactions discovered may lead to the drug being repositioned as a therapeutic treatment for its off-target's associated disease, added insight into the drug's mechanism of action, and added insight into the drug's side effects

    Deletion of the Mitochondrial Superoxide Dismutase sod-2 Extends Lifespan in Caenorhabditis elegans

    Get PDF
    The oxidative stress theory of aging postulates that aging results from the accumulation of molecular damage caused by reactive oxygen species (ROS) generated during normal metabolism. Superoxide dismutases (SODs) counteract this process by detoxifying superoxide. It has previously been shown that elimination of either cytoplasmic or mitochondrial SOD in yeast, flies, and mice results in decreased lifespan. In this experiment, we examine the effect of eliminating each of the five individual sod genes present in Caenorhabditis elegans. In contrast to what is observed in other model organisms, none of the sod deletion mutants shows decreased lifespan compared to wild-type worms, despite a clear increase in sensitivity to paraquat- and juglone-induced oxidative stress. In fact, even mutants lacking combinations of two or three sod genes survive at least as long as wild-type worms. Examination of gene expression in these mutants reveals mild compensatory up-regulation of other sod genes. Interestingly, we find that sod-2 mutants are long-lived despite a significant increase in oxidatively damaged proteins. Testing the effect of sod-2 deletion on known pathways of lifespan extension reveals a clear interaction with genes that affect mitochondrial function: sod-2 deletion markedly increases lifespan in clk-1 worms while clearly decreasing the lifespan of isp-1 worms. Combined with the mitochondrial localization of SOD-2 and the fact that sod-2 mutant worms exhibit phenotypes that are characteristic of long-lived mitochondrial mutants—including slow development, low brood size, and slow defecation—this suggests that deletion of sod-2 extends lifespan through a similar mechanism. This conclusion is supported by our demonstration of decreased oxygen consumption in sod-2 mutant worms. Overall, we show that increased oxidative stress caused by deletion of sod genes does not result in decreased lifespan in C. elegans and that deletion of sod-2 extends worm lifespan by altering mitochondrial function
    corecore