25,283 research outputs found
Struggling to a monumental triumph : Re-assessing the final stages of the smallpox eradication program in India, 1960-1980
The global smallpox program is generally presented as the brainchild of a handful of actors from the WHO headquarters in Geneva and at the agency's regional offices. This article attempts to present a more complex description of the drive to eradicate smallpox. Based on the example of India, a major focus of the campaign, it is argued that historians and public health officials should recognize the varying roles played by a much wider range of participants. Highlighting the significance of both Indian and international field officials, the author shows how bureaucrats and politicians at different levels of administration and society managed to strengthen—yet sometimes weaken—important program components. Centrally dictated strategies developed at WHO offices in Geneva and New Delhi, often in association with Indian federal authorities, were reinterpreted by many actors and sometimes changed beyond recognition
Quantum quenches of ion Coulomb crystals across structural instabilities
Quenches in an ion chain can create coherent superpositions of motional
states across the linear-zigzag structural transition. The procedure has been
described in [Phys. Rev. A 84, 063821 (2011)] and makes use of spin-dependent
forces, so that a coherent superposition of the electronic states of one ion
evolves into an entangled state between the chain's internal and external
degrees of freedom. The properties of the crystalline state so generated are
theoretically studied by means of Ramsey interferometry on one ion of the
chain. An analytical expression for the visibility of the interferometric
measurement is obtained for a chain of arbitrary number of ions and as a
function of the time elapsed after the quench. Sufficiently close to the
linear-zigzag instability the visibility decays very fast, but exhibits
revivals at the period of oscillation of the mode that drives the structural
instability. These revivals have a periodicity that is independent of the
crystal size, and they signal the creation of entanglement by the quantum
quench.Comment: 14 pages, 8 figures; added a paragraph in the introduction providing
more background, added paragraph at the end of Sec. IV discussing
experimental parameter
Earth orbital teleoperator systems evaluation
The mechanical extension of the human operator to remote and specialized environments poses a series of complex operational questions. A technical and scientific team was organized to investigate these questions through conducting specific laboratory and analytical studies. The intent of the studies was to determine the human operator requirements for remotely manned systems and to determine the particular effects that various system parameters have on human operator performance. In so doing, certain design criteria based on empirically derived data concerning the ultimate control system, the human operator, were added to the Teleoperator Development Program
Magnetic and thermodynamic properties of cobalt doped iron pyrite: Griffiths Phase in a magnetic semiconductor
Doping of the band insulator FeS with Co on the Fe site introduces a
small density of itinerant carriers and magnetic moments. The lattice constant,
AC and DC magnetic susceptibility, magnetization, and specific heat have been
measured over the range of Co concentration. The variation of
the AC susceptibility with hydrostatic pressure has also been measured in a
small number of our samples. All of these quantities show systematic variation
with including a paramagnetic to disordered ferromagnetic transition at
. A detailed analysis of the changes with temperature and
magnetic field reveal small power law dependencies at low temperatures for
samples near the critical concentration for magnetism, and just above the Curie
temperature at higher . In addition, the magnetic susceptibility and
specific heat are non-analytic around H=0 displaying an extraordinarily sharp
field dependence in this same temperature range. We interpret this behavior as
due to the formation of Griffiths phases that result from the quenched disorder
inherent in a doped semiconductor.Comment: 22 pages including 27 figure
Engineering entanglement for metrology with rotating matter waves
Entangled states of rotating, trapped ultracold bosons form a very promising scenario for quantum metrology. In order to employ such states for metrology, it is vital to understand their detailed form and the enhanced accuracy with which they could measure phase, in this case generated through rotation. In this work, we study the rotation of ultracold bosons in an asymmetric trapping potential beyond the lowest Landau level (LLL) approximation. We demonstrate that while the LLL can identify reasonably the critical frequency for a quantum phase transition and entangled state generation, it is vital to go beyond the LLL to identify the details of the state and quantify the quantum Fisher information (which bounds the accuracy of the phase measurement). We thus identify a new parameter regime for useful entangled state generation, amenable to experimental investigation
Discovery of Griffiths phase in itinerant magnetic semiconductor Fe_{1-x}Co_xS_2
Critical points that can be suppressed to zero temperature are interesting
because quantum fluctuations have been shown to dramatically alter electron gas
properties. Here, the metal formed by Co doping the paramagnetic insulator
FeS, FeCoS, is demonstrated to order ferromagnetically at
where we observe unusual transport, magnetic, and
thermodynamic properties. We show that this magnetic semiconductor undergoes a
percolative magnetic transition with distinct similarities to the Griffiths
phase, including singular behavior at and zero temperature.Comment: 10 pages, 4 figure
A 3D machine vision method for non-invasive assessment of respiratory function
Copyright © 2015 John Wiley & Sons, Ltd. Background: Respiratory function testing is important for detecting and monitoring illness, however, it is difficult for some patients, such as the young and severely ill, to perform conventional tests that require cooperation and/or patient contact. Method: A new method was developed for non-contact breathing measurement, employing photometric stereo to capture the surface topography of the torso of an unconstrained subject. The surface is integrated to calculate time-dependent volume changes during respiration. Results: The method provides a useful means of continuously measuring volume changes during respiration with high spatial and temporal resolution. The system was tested by comparison with pneumotachometry equipment and a clear periodic signal, of a frequency corresponding to the reference data, was observed. Conclusion: The approach is unique in performing breathing monitoring (with potential diagnostic capability) for unconstrained patients in virtually any lighting conditions (including darkness during sleep) and in a non-contact, unobtrusive (i.e. using imperceptible light) fashion. Copyright © 2015 John Wiley & Sons, Ltd
Flow Induced Organization and Memory of a Vortex Lattice
We report on experiments probing the evolution of a vortex state in response
to a driving current in 2H-NbSe crystals. By following the vortex motion
with fast transport measurements we find that the current enables the system to
reorganize and access new configurations. During this process the system
exhibits a long-term memory: if the current is turned off the vortices freeze
in place remembering their prior motion. When the current is restored the
motion resumes where it stopped. The experiments provide evidence for a
dynamically driven structural change of the vortex lattice and a corresponding
dynamic phase diagram that contains a previously unknown regime where the
critical current can be either or by applying an
appropriate driving current.Comment: 5 pages, 4figure
A Feature Analysis Framework for Evaluating Multi-Agent System Development Methodologies
This paper proposes a comprehensive and multi-dimensional feature analysis framework for evaluating and comparing methodologies for developing multi-agent systems (MAS). Developed from a synthesis of various existing evaluation frameworks, the novelty of our framework lies in the high degree of its completeness and the relevance of its evaluation criteria. The paper also presents a pioneering effort in identifying the standard steps and concepts to be supported by a MAS-development process and models
- …