40 research outputs found

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    Neurologic Involvement in Children and Adolescents Hospitalized in the United States for COVID-19 or Multisystem Inflammatory Syndrome

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Importance Coronavirus disease 2019 (COVID-19) affects the nervous system in adult patients. The spectrum of neurologic involvement in children and adolescents is unclear. Objective To understand the range and severity of neurologic involvement among children and adolescents associated with COVID-19. Setting, Design, and Participants Case series of patients (age <21 years) hospitalized between March 15, 2020, and December 15, 2020, with positive severe acute respiratory syndrome coronavirus 2 test result (reverse transcriptase-polymerase chain reaction and/or antibody) at 61 US hospitals in the Overcoming COVID-19 public health registry, including 616 (36%) meeting criteria for multisystem inflammatory syndrome in children. Patients with neurologic involvement had acute neurologic signs, symptoms, or diseases on presentation or during hospitalization. Life-threatening involvement was adjudicated by experts based on clinical and/or neuroradiologic features. Exposures Severe acute respiratory syndrome coronavirus 2. Main Outcomes and Measures Type and severity of neurologic involvement, laboratory and imaging data, and outcomes (death or survival with new neurologic deficits) at hospital discharge. Results Of 1695 patients (909 [54%] male; median [interquartile range] age, 9.1 [2.4-15.3] years), 365 (22%) from 52 sites had documented neurologic involvement. Patients with neurologic involvement were more likely to have underlying neurologic disorders (81 of 365 [22%]) compared with those without (113 of 1330 [8%]), but a similar number were previously healthy (195 [53%] vs 723 [54%]) and met criteria for multisystem inflammatory syndrome in children (126 [35%] vs 490 [37%]). Among those with neurologic involvement, 322 (88%) had transient symptoms and survived, and 43 (12%) developed life-threatening conditions clinically adjudicated to be associated with COVID-19, including severe encephalopathy (n = 15; 5 with splenial lesions), stroke (n = 12), central nervous system infection/demyelination (n = 8), Guillain-Barré syndrome/variants (n = 4), and acute fulminant cerebral edema (n = 4). Compared with those without life-threatening conditions (n = 322), those with life-threatening neurologic conditions had higher neutrophil-to-lymphocyte ratios (median, 12.2 vs 4.4) and higher reported frequency of D-dimer greater than 3 μg/mL fibrinogen equivalent units (21 [49%] vs 72 [22%]). Of 43 patients who developed COVID-19–related life-threatening neurologic involvement, 17 survivors (40%) had new neurologic deficits at hospital discharge, and 11 patients (26%) died. Conclusions and Relevance In this study, many children and adolescents hospitalized for COVID-19 or multisystem inflammatory syndrome in children had neurologic involvement, mostly transient symptoms. A range of life-threatening and fatal neurologic conditions associated with COVID-19 infrequently occurred. Effects on long-term neurodevelopmental outcomes are unknown

    Characteristics and Outcomes of US Children and Adolescents With Multisystem Inflammatory Syndrome in Children (MIS-C) Compared With Severe Acute COVID-19

    Get PDF
    Importance Refinement of criteria for multisystem inflammatory syndrome in children (MIS-C) may inform efforts to improve health outcomes. Objective To compare clinical characteristics and outcomes of children and adolescents with MIS-C vs those with severe coronavirus disease 2019 (COVID-19). Setting, Design, and Participants Case series of 1116 patients aged younger than 21 years hospitalized between March 15 and October 31, 2020, at 66 US hospitals in 31 states. Final date of follow-up was January 5, 2021. Patients with MIS-C had fever, inflammation, multisystem involvement, and positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcriptase–polymerase chain reaction (RT-PCR) or antibody test results or recent exposure with no alternate diagnosis. Patients with COVID-19 had positive RT-PCR test results and severe organ system involvement. Exposure SARS-CoV-2. Main Outcomes and Measures Presenting symptoms, organ system complications, laboratory biomarkers, interventions, and clinical outcomes. Multivariable regression was used to compute adjusted risk ratios (aRRs) of factors associated with MIS-C vs COVID-19. Results Of 1116 patients (median age, 9.7 years; 45% female), 539 (48%) were diagnosed with MIS-C and 577 (52%) with COVID-19. Compared with patients with COVID-19, patients with MIS-C were more likely to be 6 to 12 years old (40.8% vs 19.4%; absolute risk difference [RD], 21.4% [95% CI, 16.1%-26.7%]; aRR, 1.51 [95% CI, 1.33-1.72] vs 0-5 years) and non-Hispanic Black (32.3% vs 21.5%; RD, 10.8% [95% CI, 5.6%-16.0%]; aRR, 1.43 [95% CI, 1.17-1.76] vs White). Compared with patients with COVID-19, patients with MIS-C were more likely to have cardiorespiratory involvement (56.0% vs 8.8%; RD, 47.2% [95% CI, 42.4%-52.0%]; aRR, 2.99 [95% CI, 2.55-3.50] vs respiratory involvement), cardiovascular without respiratory involvement (10.6% vs 2.9%; RD, 7.7% [95% CI, 4.7%-10.6%]; aRR, 2.49 [95% CI, 2.05-3.02] vs respiratory involvement), and mucocutaneous without cardiorespiratory involvement (7.1% vs 2.3%; RD, 4.8% [95% CI, 2.3%-7.3%]; aRR, 2.29 [95% CI, 1.84-2.85] vs respiratory involvement). Patients with MIS-C had higher neutrophil to lymphocyte ratio (median, 6.4 vs 2.7, P < .001), higher C-reactive protein level (median, 152 mg/L vs 33 mg/L; P < .001), and lower platelet count (<150 ×103 cells/μL [212/523 {41%} vs 84/486 {17%}, P < .001]). A total of 398 patients (73.8%) with MIS-C and 253 (43.8%) with COVID-19 were admitted to the intensive care unit, and 10 (1.9%) with MIS-C and 8 (1.4%) with COVID-19 died during hospitalization. Among patients with MIS-C with reduced left ventricular systolic function (172/503, 34.2%) and coronary artery aneurysm (57/424, 13.4%), an estimated 91.0% (95% CI, 86.0%-94.7%) and 79.1% (95% CI, 67.1%-89.1%), respectively, normalized within 30 days. Conclusions and Relevance This case series of patients with MIS-C and with COVID-19 identified patterns of clinical presentation and organ system involvement. These patterns may help differentiate between MIS-C and COVID-19

    Electronic structure and cohesive properties of GaN

    Get PDF
    The first-ever Compton profile of GaN employing high energy (662 keV) γ-radiations from a 137Cs source has been reported. To compare our experimental momentum densities, the Compton profiles and electronic properties using density functional theory within linear combination of atomic orbitals have also been computed. The nature of bonding in GaN is compared with its isoelectronic InN using equal-valence-electron-density profiles and Mulliken’s population. To establish applicability of Compton scattering in computation of cohesive energy, the cohesive energy using the experimental and theoretical momentum densities has also been studied. The energy bands and density of states computed using DFT calculations are compared with the existing data

    Electronic structure and cohesive properties of GaN

    No full text
    328-334The first-ever Compton profile of GaN employing high energy (662 keV) γ-radiations from a 137Cs source has been reported. To compare our experimental momentum densities, the Compton profiles and electronic properties using density functional theory within linear combination of atomic orbitals have also been computed. The nature of bonding in GaN is compared with its isoelectronic InN using equal-valence-electron-density profiles and Mulliken’s population. To establish applicability of Compton scattering in computation of cohesive energy, the cohesive energy using the experimental and theoretical momentum densities has also been studied. The energy bands and density of states computed using DFT calculations are compared with the existing data

    Temperature dependent spin momentum densities in Ni-Mn-In alloys

    No full text
    The spin-dependent electron momentum densities in Ni2MnIn and Ni2Mn1.4In0.6 shape memory alloy using magnetic Compton scattering with 182.2 keV circularly polarized synchrotron radiation are reported. The magnetic Compton profiles were measured at different temperatures ranging between 10 and 300 K. The profiles have been analyzed mainly in terms of Mn 3d electrons to determine their role in the formation of the total spin moment. We have also computed the spin polarized energy bands, partial and total density of states, Fermi surfaces and spin moments using full potential linearized augmented plane wave and spin polarized relativistic Korringa-Kohn-Rostoker methods. The total spin moments obtained from our magnetic Compton profile data are explained using both the band structure models. The present Compton scattering investigations are also compared with magnetization measurements

    Magnetic Compton scattering study of Ni<SUB>2+x</SUB>Mn<SUB>1−x</SUB>Ga ferromagnetic shape-memory alloys

    No full text
    In this paper, we report the spin-polarized momentum densities of Ni<SUB>2+x</SUB>Mn<SUB>1−x</SUB>Ga (x=0.03, 0.26, and 0.35) Heusler alloys at various temperatures and magnetic fields using magnetic Compton scattering technique. Magnetization studies are also performed for comparison. It is seen that the variation of magnetic effect (ratio of magnetic to charge intensities) is consistent with the martensitic transition, as shown by the differential scanning calorimetry data. The magnetic Compton profiles have been analyzed mainly in terms of the contributions from the 3d electrons of Mn to determine their role in the formation of total spin moment. The full potential linearized augmented plane-wave method has been used to calculate the spin-polarized energy bands and the spin moments of Ni<SUB>2</SUB>MnGa and Ni<SUB>2.25</SUB>Mn<SUB>0.75</SUB>Ga. Ni<SUB>2</SUB>MnGa exhibits half metallicity along certain high-symmetry directions of the Brillouin zone. For Ni<SUB>2</SUB>MnGa, the total and Mn local moments obtained from Compton scattering are in excellent agreement with theory
    corecore