272 research outputs found
Comment on "First Observation of Ground State Dineutron Decay: 16Be"
A recent measurement [Spyrou et al., PRL 108, 102501 (2012)] of the in-flight
decay of 16Be into 14Be+n+n has been interpreted as the first case of dineutron
emission. Here we point out that the inclusion of the n-n interaction neglected
in the description of the direct three-body decay can generate strong
enhancements at low n-n relative energy and angle, as observed, without any
need to invoke dineutron decay.Comment: Final version, published in Physical Review Letter
Structure of Be probed via secondary beam reactions
The low-lying level structure of the unbound neutron-rich nucleus Be
has been investigated via breakup on a carbon target of secondary beams of
B at 35 MeV/nucleon. The coincident detection of the beam velocity
Be fragments and neutrons permitted the invariant mass of the
Be+ and Be++ systems to be reconstructed. In the case of
the breakup of B, a very narrow structure at threshold was observed in
the Be+ channel. Contrary to earlier stable beam fragmentation
studies which identified this as a strongly interacting -wave virtual state
in Be, analysis here of the Be++ events demonstrated that
this was an artifact resulting from the sequential-decay of the
Be(2) state. Single-proton removal from B was found to
populate a broad low-lying structure some 0.70 MeV above the neutron-decay
threshold in addition to a less prominent feature at around 2.4 MeV. Based on
the selectivity of the reaction and a comparison with (0-3)
shell-model calculations, the low-lying structure is concluded to most probably
arise from closely spaced J=1/2 and 5/2 resonances
(E=0.400.03 and 0.85 MeV), whilst the broad
higher-lying feature is a second 5/2 level (E=2.350.14 MeV). Taken
in conjunction with earlier studies, it would appear that the lowest 1/2
and 1/2 levels lie relatively close together below 1 MeV.Comment: 14 pages, 13 figures, 2 tables. Accepted for publication in Physical
Review
Study of multi-neutron emission in the β-decay of 11Li
The kinematics of two-neutron emission following the β-decay of 11Li was investigated for the first time by detecting the two neutrons in coincidence and by measuring their angle and energy. An array of liquid-scintillator neutron detectors was used to reject cosmic-ray and γ-ray backgrounds by pulse-shape discrimination. Cross-talk events in which two detectors are fired by a single neutron
were rejected using a filter tested on the β-1n emitter 9Li. A large cross-talk rejection rate is obtained (> 95%) over most of the energy range of interest. Application
to 11Li data leads to a significant number of events interpreted as β-2n decay. A discrete neutron line at ≈ 2 MeV indicates sequential two-neutron emission, possibly
from the unbound state at 10.6 MeV excitation energy in 11Be
Prolate-Spherical Shape Coexistence at N=28 in S
The structure of S has been studied using delayed and
electron spectroscopy at \textsc{ganil}. The decay rates of the 0
isomeric state to the 2 and 0 states have been measured for the
first time, leading to a reduced transition probability
B(E2~:~20= 8.4(26)~efm and a monopole
strength (E0~:~00
=~8.7(7)10. Comparisons to shell model calculations point
towards prolate-spherical shape coexistence and a phenomenological two level
mixing model is used to extract a weak mixing between the two configurations.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
Experimental study of high-lying states in <sup>28</sup>Mg using the resonant elastic scattering of α particles
International audienceThe excitation function of Mg28 above the α-decay threshold has been measured for the first time using the resonant scattering of α particles with the technique of a thick target in inverse kinematics. Thirteen new states are reported between Ex=15.5 and Ex=20.5 MeV, and suggestions for spin-parity assignments are given for two of these. Calculations of the branching ratio to α decay for these states as well as comparison of the measured cross sections to calculations suggest that α+Neg.s.24 clustering is not dominant in this energy regime
The beta-decay of 22Al
In an experiment performed at the LISE3 facility of GANIL, we studied the
decay of 22Al produced by the fragmentation of a 36Ar primary beam. A
beta-decay half-life of 91.1 +- 0.5 ms was measured. The beta-delayed one- and
two-proton emission as well as beta-alpha and beta-delayed gamma decays were
measured and allowed us to establish a partial decay scheme for this nucleus.
New levels were determined in the daughter nucleus 22Mg. The comparison with
model calculations strongly favours a spin-parity of 4+ for the ground state of
22Al
Emergence of the N=16 shell gap in ^(21)O
This is the publisher's version, also available electronically from http://journals.aps.org/prc/abstract/10.1103/PhysRevC.84.011301
Low-lying neutron fp-shell intruder states in Ne-27
This is the publisher's version, also available electronically from http://journals.aps.org/prc/abstract/10.1103/PhysRevC.85.011302
Collapse of the N=28 shell closure in Si
The energies of the excited states in very neutron-rich Si and
P have been measured using in-beam -ray spectroscopy from the
fragmentation of secondary beams of S at 39 A.MeV. The low 2
energy of Si, 770(19) keV, together with the level schemes of
P provide evidence for the disappearance of the Z=14 and N=28
spherical shell closures, which is ascribed mainly to the action of
proton-neutron tensor forces. New shell model calculations indicate that
Si is best described as a well deformed oblate rotor.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. let
- …