521 research outputs found

    Primary skeletal muscle cells cultured on gelatin bead microcarriers develop structural and biochemical features characteristic of adult skeletal muscle

    Get PDF
    A primary skeletal muscle cell culture, in which myoblasts derived from newborn rabbit hindlimb muscles grow on gelatin bead microcarriers in suspension and differentiate into myotubes, has been established previously. In the course of differentiation and beginning spontaneous contractions, these multinucleated myotubes do not detach from their support. Here, we describe the development of the primary myotubes with respect to their ultrastructural differentiation. Scanning electron microscopy reveals that myotubes not only grow around the surface of one carrier bead but also attach themselves to neighbouring carriers, forming bridges between carriers. Transmission electron microscopy demonstrates highly ordered myofibrils, T-tubules and sarcoplasmic reticulum. The functionality of the contractile apparatus is evidenced by contractile activity that occurs spontaneously or can be elicited by electrostimulation. Creatine kinase activity increases steadily until day 20 of culture. Regarding the expression of isoforms of myosin heavy chains (MHC), we could demonstrate that from day 16 on, no non-adult MHC isoform mRNAs are present. Instead, on day 28 the myotubes express predominantly adult fast MHCIId/x mRNA and protein. This MHC pattern resembles that of fast muscles of adult rabbits. In contrast, primary myotubes grown on matrigel-covered culture dishes express substantial amounts of non-adult MHC protein even on day 21. To conclude, primary myotubes grown on microcarriers in their later stages exhibit many features of adult skeletal muscle and characteristics of fast type II fibers. Thus, the culture represents an excellent model of adult fast skeletal muscle, for example when investigating molecular mechanisms of fast-to-slow fiber type transformatio

    Momentum, Density, and Isospin dependence of the Symmetric and Asymmetric Nuclear Matter Properties

    Full text link
    Properties of symmetric and asymmetric nuclear matter have been investigated in the relativistic Dirac-Brueckner-Hartree-Fock approach based on projection techniques using the Bonn A potential. The momentum, density, and isospin dependence of the optical potentials and nucleon effective masses are studied. It turns out that the isovector optical potential depends sensitively on density and momentum, but is almost insensitive to the isospin asymmetry. Furthermore, the Dirac mass mDm^*_D and the nonrelativistic mass mNRm^*_{NR} which parametrizes the energy dependence of the single particle spectrum, are both determined from relativistic Dirac-Brueckner-Hartree-Fock calculations. The nonrelativistic mass shows a characteristic peak structure at momenta slightly above the Fermi momentum \kf. The relativistic Dirac mass shows a proton-neutron mass splitting of mD,n<mD,pm^*_{D,n} <m^*_{D,p} in isospin asymmetric nuclear matter. However, the nonrelativistic mass has a reversed mass splitting mNR,n>mNR,pm^*_{NR,n} >m^*_{NR,p} which is in agreement with the results from nonrelativistic calculations.Comment: 25 pages, 12 figures, to appear in Physical Review

    Investigation of a0-f0 mixing

    Get PDF
    We investigate the isospin-violating mixing of the light scalar mesons a0(980) and f0(980) within the unitarized chiral approach. Isospin-violating effects are considered to leading order in the quark mass differences and electromagnetism. In this approach both mesons are generated through meson-meson dynamics. Our results provide a description of the mixing phenomenon within a framework consistent with chiral symmetry and unitarity, where these resonances are not predominantly q q-bar states. Amongst the possible experimental signals, we discuss observable consequences for the reaction J/Psi -> phi pi0 eta in detail. In particular we demonstrate that the effect of a0-f0 mixing is by far the most important isospin-breaking effect in the resonance region and can indeed be extracted from experiment.Comment: 15 pages, 9 figures; discussion extended, title changed, version published in Phys. Rev.

    Circumstantial evidence for a soft nuclear symmetry energy at supra-saturation densities

    Full text link
    Within an isospin- and momentum-dependent hadronic transport model it is shown that the recent FOPI data on the π/π+\pi^-/\pi^+ ratio in central heavy-ion collisions at SIS/GSI energies (Willy Reisdorf {\it et al.}, NPA {\bf 781}, 459 (2007)) provide circumstantial evidence suggesting a rather soft nuclear symmetry energy \esym at ρ2ρ0\rho\geq 2\rho_0 compared to the Akmal-Pandharipande-Ravenhall prediction. Some astrophysical implications and the need for further experimental confirmations are discussed.Comment: Version to appear in Phys. Rev. Let

    Диагностика частотной области изоляции трансформатора

    Get PDF
    The first part of paper deals with the base information about diagnostics of power transformers. In this part are presented differently insulating methods, for example method of recovery voltage method, method of polarization and depolarization currents and chromatographic analysis. The second part of paper deals use of method of frequency domain spectroscopy for oil power transformers. This method is used in analysis insulating condition of power transformer with system of oil-paper. It was found, that the results of these tests are highly impacted by the operating temperature during the experimental measurement. Moisture and conductivity between insulating paper and oil in an insulating system are highly dependent from temperature. In the other part, the paper presents experimental results of the frequency diagnostic measurement for a real single-phase traction transformer 110/27 kV at different operating temperatures and states (with oil and without). Finally in the last part, the paper presents comparing frequency insulating measurements among several the same single-phase transformers 110/27 kV

    The cusp effect in eta' --> eta pi pi decays

    Full text link
    Strong final-state interactions create a pronounced cusp in eta' --> eta pi0 pi0 decays. We adapt and generalize the non-relativistic effective field theory framework developed for the extraction of pi pi scattering lengths from K --> 3 pi decays to this case. The cusp effect is predicted to have an effect of more than 8% on the decay spectrum below the pi+ pi- threshold.Comment: 11 pages, 8 figures; comment added, typos corrected, version published in Eur. Phys. J.

    Aspects of meson-baryon scattering in three- and two-flavor chiral perturbation theory

    Get PDF
    We analyze meson-baryon scattering lengths in the framework of covariant baryon chiral perturbation theory at leading one-loop order. We compute the complete set of matching relations between the dimension-two low-energy constants in the two- and three-flavor formulations of the theory. We derive new two-flavor low-energy theorems for pion-hyperon and pion-cascade scattering that can be tested in lattice simulations.Comment: 22 pages, 5 figures, version published in Phys. Rev.

    Instant Two-Body Equation in Breit Frame

    Get PDF
    A quasipotential formalism for elastic scattering from relativistic bound states is based on applying an instant constraint to both initial and final states in the Breit frame. This formalism is advantageous for the analysis of electromagnetic interactions because current conservation and four momentum conservation are realized within a three-dimensional formalism. Wave functions are required in a frame where the total momentum is nonzero, which means that the usual partial wave analysis is inapplicable. In this work, the three-dimensional equation is solved numerically, taking into account the relevant symmetries. A dynamical boost of the interaction also is needed for the instant formalism, which in general requires that the boosted interaction be defined as the solution of a four-dimensional equation. For the case of a scalar separable interaction, this equation is solved and the Lorentz invariance of the three-dimensional formulation using the boosted interaction is verified. For more realistic interactions, a simple approximation is used to characterize the boost of the interaction.Comment: 20 pages in revtex 3, 3 figures. Fixed reform/tex errors

    Renormalization of relativistic baryon chiral perturbation theory and power counting

    Get PDF
    We discuss a renormalization scheme for relativistic baryon chiral perturbation theory which provides a simple and consistent power counting for renormalized diagrams. The method involves finite subtractions of dimensionally regularized diagrams beyond the standard MSˉ\bar{\rm MS} scheme of chiral perturbation theory to remove contributions violating the power counting. This is achieved by a suitable renormalization of the parameters of the most general effective Lagrangian. In addition to simplicity our method has the benefit that it can be easily applied to multiloop diagrams. As an application we discuss the mass and the scalar form factor of the nucleon and compare the results with the expressions of the infrared regularization of Becher and Leutwyler.Comment: 20 pages, RevTex, 1 figure, published version is shortene
    corecore