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We analyze meson–baryon scattering lengths in the framework of covariant baryon chiral pertur-
bation theory at leading one-loop order. We compute the complete set of matching relations between
the dimension-two low-energy constants in the two- and three-flavor formulations of the theory. We
derive new two-flavor low-energy theorems for pion–hyperon scattering that can be tested in lattice
simulations.
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I. INTRODUCTION AND SUMMARY

At energies well below the chiral symmetry break-
ing scale, chiral perturbation theory (ChPT) is a useful
tool to investigate various hadronic interactions, such as
meson–baryon scattering (throughout this paper, mesons
and baryons refer to the octet of Goldstone bosons and
the lowest-lying baryon octet, respectively). The theory
relies on an expansion of the QCD S-matrix and transi-
tion currents in powers of small external momenta and
quark masses; the organization of the different orders
of any calculation exploits the power counting in these
parameters. [For a recent review on baryon ChPT, see
Ref. [1].] However, especially for meson–baryon systems,
calculations in the three-flavor sector of up, down, and
strange quarks are often hampered by a slow convergence
due to the large kaon-loop contributions or even require
a nonperturbative resummation due to the appearance
of subthreshold resonances. In Ref. [2] an analysis of
meson–baryon scattering lengths at third order in the
framework of heavy-baryon chiral perturbation theory
(HBChPT) was presented (see also Ref. [3] for an ear-
lier calculation of kaon–nucleon scattering in that frame-
work). This issue may be readdressed in the context
of a covariant formulation of baryon ChPT, as the re-
summation of the kinetic energy terms might help im-
prove the convergence. We will thus repeat the calcula-
tion of Ref. [2] in the framework of infrared regulariza-
tion (IR) [4], which also allows to take the strict heavy-
baryon limit. This gives us the opportunity to investi-
gate the question of how strongly the convergence of the
chiral expansion is affected by the heavy-baryon limit in
meson–baryon scattering at threshold.

On the other hand, integrating out the strange quarks
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from the effective field theory leaves one with pion–
nucleon ChPT, which in general shows a better conver-
gence due to the much smaller pion mass. Evidently,
the two- and three-flavor theories are not independent –
the pertinent low-energy constants (LECs) in the cor-
responding chiral effective Lagrangian are related by
matching. As there are more LECs in SU(3) than in
SU(2), matching allows to construct constraints for com-
binations of three-flavor LECs. Such constraints can e.g.
be used in the unitarized coupled-channel analysis of the
existing and upcoming photo-kaon threshold production
data from ELSA, JLab, and MAMI [5]. As meson–baryon
scattering is an important ingredient for photoproduction
calculations because of final-state interactions, a general
matching analysis for the LECs related to meson–baryon
and pion–nucleon scattering is called for. This indeed
is one of the topics of this paper. Furthermore, it was
already stressed in the context of pion–kaon scattering
that there exist certain observables in the three-flavor ef-
fective theory that are not afflicted by large kaon-mass
corrections [6]. We therefore systematically analyze two-
flavor versions of pion–hyperon scattering, extending ear-
lier work on two-flavor ChPT for hyperons [7, 8, 9]. Such
a framework allows to formulate low-energy theorems,
which are useful in the analysis of lattice QCD data [10].

The pertinent results of our investigation can be sum-
marized as follows:

(i) We have calculated all elastic meson–baryon scat-
tering lengths in a covariant formulation of baryon
ChPT to third order in the chiral expansion. The
appearing dimension-two LECs were determined
from the baryon masses and meson–baryon scatter-
ing data, while the dimension-three LECs were set
to zero. In most channels, we find sizeable second-
and third-order corrections to the leading-order re-
sults.

(ii) Fitting the dynamical dimension-two LECs to the
same input, we find that the chiral corrections
in the covariant (full) approach come out mostly
larger than in the heavy-baryon scheme.
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(iii) We have also considered the so-called reordering
prescription [4] that has proven to be useful in
case of the baryon masses and the magnetic mo-
ments [11]. In contrast to these quantities, in most
cases reordering – using only the dimension-two op-
erators – does not improve the convergence of the
chiral expansion.

(iv) We have performed the matching of the two-
and three-flavor pion–nucleon scattering ampli-
tudes and derived the complete set of constraints
between the dimension-two LECs ci for SU(2) and
bi for SU(3) up-to-and-including terms of order
MK ∼ √

ms .

(v) We have given the complete effective Lagrangians
for pion–hyperon interactions to second order in the
chiral expansion and derived the matching relations
between the dimension-two LECs of the two- and
three-flavor effective field theories.

(vi) We have derived novel low-energy theorems for
pion–hyperon scattering and identified all channels
that only acquire corrections in powers of the pion
mass. These formulas will eventually be useful
for chiral extrapolation of pion–hyperon scattering
from lattice simulations.

The article is organized as follows. Section II contains
the calculation and analysis of the meson–baryon scat-
tering lengths to third order in covariant baryon ChPT
and the comparison with the earlier heavy-baryon re-
sults. We also perform reordering of the chiral expansion
for the scattering lengths and discuss the pertinent re-
sults. In Sec. III, we consider the matching between the
two- and three-flavor versions of the effective field theory
and derive relations between the pertinent dimension-
two couplings. We derive the general chiral effective
Lagrangians for pion–hyperon interactions to second or-
der and compute the matching relations to the three-
flavor dimension-two LECs. We analyze the resulting
scattering amplitudes and present new SU(2) low-energy
theorems for certain scattering amplitudes. We further
discuss the resulting chiral extrapolations for all pion–
baryon scattering amplitudes that are not affected by
large kaon-loop corrections. Most technical details are
relegated to the appendices.

II. MESON–BARYON SCATTERING TO ONE
LOOP

In this section we present our results for the S-wave
elastic meson–baryon scattering lengths up to third chi-
ral order in the framework of SU(3) chiral perturbation
theory, regularized in a Lorentz-invariant way.

pa pb

qjqi

FIG. 1: Kinematical structure of the meson–baryon scattering
process.

A. Kinematics

In our description of the meson–baryon scattering pro-
cess we denote the in- and outgoing momenta as depicted
in Fig. 1. The external particles are on their respective
mass shell, i.e. p2

b = p2
a = m2

0 and q2
i = q2

j = M2
j . We ne-

glect isospin breaking and set mu = md such that three
different meson masses can appear, i.e. {Mπ, MK , Mη}.
Since the chiral expansion of the baryon mass goes like
mB = m0 + O(M2

φ) (here, φ is a generic symbol for any

Goldstone boson) we are allowed to use a single baryon
mass, i.e. m0, at the order of the calculation considered.

Because of Lorentz invariance and for p := pa + qi =
pb + qj , the on-shell scattering amplitude can be decom-
posed as

T b,j,i,a = T b,j,i,a
1 + /pT b,j,i,a

2 , (1)

with a, b (i, j) baryon (meson) flavor indices. The scat-
tering amplitude at threshold, to which we restrict our
calculation, determines the S-wave scattering length

ab,j,i,a
φB =

mB

4π(mB + Mj)
T b,j,i,a

φB , (2)

where T b,j,i,a
φB denotes the S-wave projection of the full

scattering amplitude, given in (1), at threshold. Note
that here mB ∈ {mN , mΛ, mΣ, mΞ}, i.e. we use the physi-
cal masses for the normalization of the scattering lengths;
this is consistent within the power counting scheme em-
ployed. Assuming isospin invariance and applying the
Wigner–Eckhart theorem, the minimal set of T-matrices
reduces to 26 different combinations, which fully deter-
mine meson–baryon scattering. For total isospin I of the

meson–baryon system, we denote its elements by T
(I)
φB

and the corresponding scattering lengths by a
(I)
φB.

B. Effective Lagrangian

For the calculation of the scattering amplitudes up-
to-and-including the third chiral order one requires the
explicit form of the chiral Lagrangian

L = L(2)
φ + L(4)

φ + L(1)
φB + L(2)

φB + L(3)
φB . (3)
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The relevant degrees of freedom are the Goldstone bosons
described by the traceless meson matrix U ∈ SU(3),

U = exp
(

i
φ

F0

)

, φ =
√

2







π0

√
2

+ η√
6

π+ K+

π− − π0

√
2

+ η√
6

K0

K− K̄0 − 2√
6
η






,

(4)
where F0 is the meson decay constant in the chiral limit,
and the low-lying baryons, collected in a traceless matrix

B =







Σ0

√
2

+ Λ√
6

Σ+ p

Σ− −Σ0

√
2

+ Λ√
6

n

Ξ− Ξ0 − 2√
6
Λ






. (5)

We set external currents to zero except the scalar s,
which contains the quark mass matrix s = M =
diag(m̂, m̂, ms), where m̂ is the average light quark mass.
We furthermore use

u2 := U , uµ := iu†∂µu + iu∂µu† ,

χ± := u†χu† ± uχ†u , χ := 2B0 s , (6)

where B0 is a constant related to the quark condensate
in the chiral limit. The leading-order Lagrangian reads

L(1)
φB = 〈B̄(iγµDµ − m0)B〉 +

D/F

2
〈B̄γµγ5[u

µ, B]±〉 ,

(7)

where 〈. . .〉 denotes the trace in flavor space, DµB :=
∂µB + 1

2 [[u†, ∂µu], B], m0 is the common baryon octet
mass in the chiral limit, and D, F are the axial coupling
constants.

The next-to-leading-order Lagrangian [12] in its mini-
mal form contains, for the specific case of meson–baryon
scattering, 14 independent structures [13], where the first
three express the explicit symmetry breaking through the
nonvanishing quark masses:

L(2)
φB = bD/F 〈B̄ [χ+, B]±〉 + b0〈B̄B〉〈χ+〉

+ b1/2〈B̄
[

uµ, [uµ, B]∓
]

〉
+ b3〈B̄ {uµ, {uµ, B}}〉 + b4〈B̄B〉〈uµuµ〉

+ iσµν
(

b5/6〈B̄ [[uµ, uν] , B]∓〉 + b7〈B̄uµ〉〈uνB〉
)

+
i b8/9

2m0

(

〈B̄γµ
[

uµ, [uν , [Dν , B]]∓
]

〉

+ 〈B̄γµ
[

Dν , [uν , [uµ, B]]∓
]

〉
)

+
i b10

2m0

(

〈B̄γµ {uµ, {uν, [Dν , B]}}〉

+ 〈B̄γµ [Dν , {uν , {uµ, B}}]〉
)

+
i b11

2m0

(

2〈B̄γµ [Dν , B]〉〈uµuν〉

+ 〈B̄γµB〉〈[Dν , uµ] uν + uµ [Dν , uν]〉
)

, (8)

FIG. 2: Weinberg–Tomozawa (left) and Born (right) type di-
agrams. Crossed graphs are not shown.

with the bi the pertinent dimension-two LECs. The LECs
b0,D,F are the so-called symmetry breakers while the bi

(i = 1, . . . , 11) are the dynamical LECs.
At next-to-next-to-leading order the number of inde-

pendent structures increases to 78 [14] (see also Ref. [15]).
In Ref. [2], the finite contributions from these dimension-
three LECs were omitted. We will follow that approach
here for the purpose of a direct comparison with the
heavy-baryon results [2], and therefore refrain from show-
ing the third-order counterterms explicitly. We remark
that the matching relations for the dimension-two LECs
at next-to-leading order in Sec. III are not affected by
any of the dimension-three terms.

We will also require the purely mesonic Lagrangian at
leading and next-to-leading order

L(2)
φ + L(4)

φ =
F 2

0

4
〈uµuµ + χ+〉

+ L4〈uµuµ〉〈χ+〉 + L5〈uµuµχ+〉 + . . . , (9)

where again we have only displayed the terms required
later.

We wish to remark here that we stick to baryon chi-
ral perturbation theory without explicit decuplet contri-
butions, for the following reasons. For the observables
under investigation in the present article, i.e. S-wave
scattering lengths, the decuplet does not contribute at
tree level. Furthermore, the effects of the remaining π∆
loop contributions have been shown to be small for the
πN scattering lengths in a corresponding SU(2) calcula-
tion [16]. Decuplet contributions to meson–baryon scat-
tering in the heavy-baryon formalism have been investi-
gated in Ref. [17].

C. Diagrammatics

At the first chiral order the scattering amplitudes are

determined by the contact terms from L(1)
φB , i.e. the so-

called Weinberg–Tomozawa term, as well as Born graphs,
see Fig. 2. To the second chiral order only contact terms

of L(2)
φB contribute. The third-order scattering ampli-

tude contains both contact terms from L(3)
φB and loop

diagrams, see Fig. 3 (note that the tree graphs are not
shown because the corresponding LECs are set to zero).
In addition, wave-function renormalization of the exter-
nal baryon and meson legs must be taken into account,
which is determined by the self-energy diagrams in Fig. 4.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(m)

(l)(k)

(i)

(r)(p)(o)(n)

(s) (v) (t) (u)

FIG. 3: One-loop contributions to φB scattering without external leg corrections and crossed graphs. Graphs containing closed
fermion loops are not shown either, since they vanish in infrared regularization.

+

FIG. 4: Wave-function renormalization contributions for
mesons (dashed) and baryons (solid). Counterterm insertions

from L
(4)
φ are denoted by the diamond.

D. Infrared regularization

Loop corrections are in general divergent and require
regularization and renormalization. In the baryon sector,
a straightforward application of dimensional regulariza-
tion in the covariant theory is not possible as the large
scale related to the baryon mass in the chiral limit in-
validates the power counting [18]. This problem can be
overcome utilizing the so-called infrared regularization as
developed in Ref. [4] (see also Ref. [19]). In essence, any
one-loop integral can be split into an infrared-singular
and a -regular part by rearranging the Feynman param-
eter integration (we consider here, as an example, a loop
diagram with one meson and one baryon propagator)

∫ 1

0

dz (. . .) =

∫ ∞

0

dz (. . .) −
∫ ∞

1

dz (. . .) . (10)

The infrared singularity is generated in the region of
small values of the parameter z, so that this term con-
tains all the relevant low-energy information. On the
other hand, the second integral on the right-hand side
of (10) can be expanded in M/m as (as always, M (m)

denotes a meson (baryon) mass)

md−4
(

d0 + d1

(M

m

)

+ d2

(M

m

)2

+ . . .
)

, (11)

which is called the regular part of the loop integral. Its
contribution can be absorbed in the LECs of the effective
Lagrangian and thus does not need to be considered ex-
plicitly. The remaining infrared-singular part of the loop
integral has a different low-energy expansion,

md−4
(M

m

)d−3 (

c0 + c1

(M

m

)

+ c2

(M

m

)2

+ . . .
)

, (12)

and thus it is proportional to a d-dependent (fractional)
power of M/m. By the means of analytic continuation
we can manipulate any one-loop integral such that the
limit d = 4 can be performed. Notice that the dimen-
sionality of the Feynman parameter space grows with in-
creasing number of propagators. We furthermore remark
that loop integrals consisting solely of meson propaga-
tors are unchanged compared to dimensional regulariza-
tion, while those containing exclusively baryon propa-
gators have no infrared-singular part and vanish in this
scheme. For a more complete treatment of such integrals
we refer to the original article [4].

Within our calculation we reduce all loop integrals
to linear combinations of scalar loop integrals by the
Passarino–Veltman reduction procedure [20], which can
be evaluated in the sense of the above discussion. How-
ever, since there is no explicit representation of scalar
loop integrals with more than one baryon propagator
in terms of elementary functions, we evaluate the scalar
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loop integrals in a small region around threshold, see Ap-
pendix A1, where we obtain elementary functions of the
meson and baryon masses, see Appendix A3. We check
our final result by expanding it to a finite chiral order, ob-
taining the heavy-baryon result for meson–baryon scat-
tering [2, 3]. Moreover, we have checked that after a
projection to the SU(2) subgroup of SU(3) our result is
consistent with the known IR-representation of the pion–
nucleon scattering amplitude [21].

E. Results and discussion

1. Formal results

At first and second order in the chiral expansion, the
T-matrix elements are determined by tree graphs with

vertices from L(1)
φB and L(2)

φB, and thus are independent of
any regularization scheme. Born type graphs contribute
to the first chiral order of the scattering amplitude, how-
ever at threshold their leading contribution is shifted to
second order. We still count these terms as part of the
first-order corrections. This is in contrast to the discus-
sions in HBChPT [2, 3], where strict 1/m0 expansion ap-
plies and Born term contributions are part of the second
order.

At second order only four independent combinations
{B1, B2, B3, B4} of the dynamical LECs {b1, . . . , b11} of

L(2)
φB appear in meson–baryon threshold amplitudes,

B1 = b1+b8 , B2 = b2+b9 , B3 = b3+b10 , B4 = b4+b11 ,
(13)

for which we will quote fit results below.
To third chiral order both one-loop diagrams as well

as contact terms from L(3)
φB contribute. As there is no

sufficient experimental information to fix the latter, we
restrict ourselves to the one-loop corrections at this or-
der (consistent with the heavy-baryon calculation [2]).
Here as well as in the first- and second-order contribu-
tions we replace the decay constants in the chiral limit
by the physical values corresponding to the chosen chan-
nel. Since the chiral expansion of the decay constants [22]
is of the form Fπ,K,η = F0 + O(q2), the latter replace-
ment within the second- and third-order corrections only
changes the final result at orders beyond the accuracy
considered here. The replacement of the decay constants
in the leading-order contributions to the meson–baryon
scattering amplitudes produces a correction to the third
order, which must be taken into account.

Unfortunately the results of the full scattering ampli-
tudes become rather lengthy.1 The far more compact
truncated result (here and in what follows, we refer to
the heavy-baryon calculation to third order in the chiral

1 These results can be obtained as a Mathematica
R©.nb-file on

request to mai@hiskp.uni-bonn.de

expansion as the truncated result), where we neglect all
contributions starting with the fourth chiral order in the
full one-loop contributions, agrees completely with those
from Refs. [2, 3].

2. Fitting of the LECs

We use the average octet baryon mass m0 = 1.150 GeV
as well as the following numerical input: Mπ =
139.57 MeV, MK = 493.68 MeV, Mη = 547.75 MeV,
Fπ = 92.4 MeV, FK = 113.0 MeV, Fη = 120.1 MeV,
D = 0.8, and F = 0.5. We vary the scale µ in a reason-
able range around m0, 0.938 GeV < µ < 1.314 GeV.

As already stressed for a direct comparison with the
HBChPT results of Ref. [2], we will neglect the third-
order contact terms. Still, we must determine the second-
order LECs, i.e. {b0, bF , bD, B1, B2, B3, B4}. These can
be obtained by fitting the scattering amplitudes to exper-
imental results for pion–nucleon and kaon–nucleon scat-
tering, for which we use, in agreement with the analysis

of Ref. [2], a+
πN := (2a

3/2
πN + a

1/2
πN )/3 = −0.002± 0.007 fm

[23] and a
(0)
KN = +0.02 fm as well as a

(1)
KN = −0.33 fm

[24].
Our fitting procedure contains two steps. First we fix

the symmetry breakers {b0, bD, bF} using the formulas
for the baryon masses as well as the formula for the pion–
nucleon sigma term σπN up to third order from earlier
IR and HBChPT calculations [25, 26], and fitting the
LECs to the physical values, mN = 0.938 GeV, mΛ =
1.115 GeV, mΣ = 1.192 GeV, mΞ = 1.314 GeV, and
σπN = 45 ± 8 MeV [27]. The result reads

bIR
0 = −0.45+0.01

−0.01 GeV−1 , bHB
0 = −0.48 GeV−1 ,

bIR
D = +0.05+0.00

−0.00 GeV−1 , bHB
D = +0.05 GeV−1 ,

bIR
F = −0.45+0.01

−0.01 GeV−1 , bHB
F = −0.47 GeV−1 .

(14)

Using this result we fix in the second step the remaining,
dynamical, LECs, by fitting the result for the scattering
lengths up to third order to the experimental data for

a+
πN , a

(1)
KN , and a

(0)
KN . However to fix four independent

parameters we need at least one more input, for which we
choose a particular linear combination of heavy-baryon
LECs d0 = −0.996 GeV−1, in agreement with the dis-
cussions of the scattering lengths within HBChPT [2, 3].
d0 is determined within a coupled-channel approach [28]
and is given by d0 = −2B1 + 2B3 + 2B4. The results
for the full (IR) and truncated (HB) one-loop corrections
read

BIR
1 = +0.43+0.08

−0.12GeV−1, BHB
1 = +0.29+0.02

−0.04GeV−1,

BIR
2 = −0.34+0.30

−0.25GeV−1, BHB
2 = −0.35+0.14

−0.13GeV−1,

BIR
3 = +0.46+0.34

−0.40GeV−1, BHB
3 = +0.10+0.16

−0.18GeV−1,

BIR
4 = −0.53+0.22

−0.32GeV−1, BHB
4 = −0.31+0.18

−0.22GeV−1.

(15)
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Channel = O(q1) +O(q2) +O(q3)IR

P

IR

a
(3/2)
πN = −0.12 +0.05+0.06

−0.06 +0.04+0.01
−0.01 −0.04+0.07

−0.07

a
(1/2)
πN = +0.21 +0.05+0.06

−0.06 −0.19+0.01
−0.01 +0.07+0.07

−0.07

a
(3/2)
πΞ = −0.12 +0.04+0.06

−0.07 +0.10+0.00
+0.00 +0.02+0.06

−0.07

a
(1/2)
πΞ = +0.23 +0.04+0.06

−0.07 −0.24+0.02
−0.03 +0.02+0.08

−0.10

a
(2)
πΣ = −0.24 +0.10+0.02

−0.03 +0.15+0.02
−0.01 +0.01+0.04

−0.04

a
(1)
πΣ = +0.22 +0.09+0.15

−0.15 −0.21+0.01
−0.02 +0.10+0.16

−0.17

a
(0)
πΣ = +0.46 +0.11+0.15

−0.17 −0.47+0.02
−0.03 +0.10+0.17

−0.19

a
(1/2)
πΛ = −0.01 +0.03+0.03

−0.03 −0.03+0.01
−0.01 −0.01+0.04

−0.04

a
(1)
KN = −0.45 +0.60+0.14

−0.20 −0.48+0.18
−0.12 −0.33+0.32

−0.32

a
(0)
KN = +0.04 −0.15+0.59

−0.61 +0.13+0.05
−0.03 +0.02+0.64

−0.64

a
(1)

K̄N
= +0.20 +0.22+0.36

−0.40 −0.26+0.02
−0.03 + 0.18i +0.16+0.39

−0.44 + 0.18i

a
(0)

K̄N
= +0.53 +0.97+0.42

−0.51 −0.40+0.05
−0.08 + 0.22i +1.11+0.47

−0.59 + 0.22i

a
(3/2)
KΣ = −0.31 +0.33+0.41

−0.41 −0.30+0.11
−0.07 + 0.12i −0.28+0.52

−0.49 + 0.12i

a
(1/2)
KΣ = +0.47 +0.19+0.50

−0.57 +0.20+0.05
−0.07 + 0.01i +0.87+0.55

−0.64 + 0.01i

a
(3/2)

K̄Σ
= −0.22 +0.24+0.39

−0.44 −0.35+0.05
−0.03 + 0.08i −0.33+0.44

−0.47 + 0.08i

a
(1/2)

K̄Σ
= +0.34 +0.38+0.55

−0.52 +0.27+0.04
−0.06 + 0.01i +0.98+0.59

−0.59 + 0.01i

a
(1)
KΞ = +0.15 +0.34+0.43

−0.43 −0.02+0.00
−0.01 + 0.17i +0.48+0.43

−0.43 + 0.17i

a
(0)
KΞ = +0.66 +0.98+0.45

−0.58 −0.62+0.06
−0.09 + 0.14i +1.02+0.51

−0.68 + 0.14i

a
(1)

K̄Ξ
= −0.50 +0.66+0.15

−0.22 −0.42+0.19
−0.12 −0.26+0.34

−0.34

a
(0)

K̄Ξ
= −0.15 +0.02+0.70

−0.63 +0.13+0.08
−0.05 +0.00+0.78

−0.68

a
(1/2)
KΛ = −0.04 +0.50+0.46

−0.50 −0.27+0.10
−0.06 + 0.14i +0.19+0.55

−0.56 + 0.14i

a
(1/2)

K̄Λ
= −0.05 +0.50+0.46

−0.50 −0.40+0.09
−0.06 + 0.18i +0.04+0.55

−0.56 + 0.18i

a
(1/2)
ηN = −0.01 +0.26+0.56

−0.62 −0.13+0.04
−0.03 + 0.19i +0.13+0.60

−0.65 + 0.19i

a
(1/2)
ηΞ = −0.09 +0.84+0.65

−0.67 −0.49+0.09
−0.06 + 0.17i +0.25+0.74

−0.73 + 0.17i

a
(1)
ηΣ = −0.04 +0.22+0.20

−0.22 −0.15+0.03
−0.02 + 0.13i +0.03+0.24

−0.24 + 0.13i

a
(0)
ηΛ = −0.04 +0.70+0.38

−0.47 −0.51+0.13
−0.08 + 0.38i +0.15+0.51

−0.55 + 0.38i

TABLE I: Full result for the fit to a+
πN , a

(1)
KN , a

(0)
KN and d0 = −0.996 GeV−1. All scattering lengths are given in units of fm. Σ

denotes the sum of all contributions from first, second, and third order.

The results for the scattering lengths are collected in
Tables I and II. The errors quoted there are of twofold
origin: they comprise the uncertainties of the experi-
mental input, as well as the change due to the varia-
tion of the renormalization scale µ. The latter effect is
pronounced due to the neglect of the dimension-three
LECs, whose scale dependence cancels the one of the
loops at third order. For the pion channels we find that
the truncated results show better convergence as well
as consistency with the experimental data. However in

the kaon channels both approaches reproduce a
(1)

K̄N
=

(+0.37+0.60i) fm [24] quite well. a
(0)

K̄N
appears with the

wrong sign compared to a
(0)

K̄N
= (−1.70 + 0.68i) fm [24];

the failure to describe this particular scattering length

can be understood by the presence of the subthresh-
old resonance Λ(1405). On the other hand, information
on the ηN scattering length, where the corresponding
threshold lies only ≈ 50 MeV below the S11 resonance
N(1535), has been obtained in a coupled-channel analy-
sis of the inelastic reactions π−p → ηn, with the result

a
(1/2)
ηN =

(

+0.621±0.040+(0.306±0.034)i
)

fm [29]. The
real part is reproduced quite well in both approaches,
the imaginary part deviates slightly from the coupled-
channel result. Note also that the small value for the πΛ
scattering length is consistent with the measured phase
shift difference at the Ξ mass [30, 31]. In both approaches
the chiral series of the scattering lengths in the nonpionic
channels do not (or at most case by case) converge.
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Channel = O(q1) +O(q2) +O(q3)HB

P

HB

a
(3/2)
πN = −0.12 +0.05+0.02

−0.03 −0.06+0.00
+0.00 −0.13+0.03

−0.03

a
(1/2)
πN = +0.21 +0.05+0.02

−0.03 +0.00+0.00
+0.00 +0.26+0.03

−0.03

a
(3/2)
πΞ = −0.12 +0.04+0.03

−0.03 −0.09+0.00
+0.00 −0.17+0.03

−0.03

a
(1/2)
πΞ = +0.23 +0.04+0.03

−0.03 −0.03+0.00
+0.00 +0.23+0.03

−0.03

a
(2)
πΣ = −0.24 +0.07+0.01

−0.01 −0.07+0.00
+0.00 −0.24+0.01

−0.01

a
(1)
πΣ = +0.22 +0.11+0.06

−0.06 +0.00+0.00
+0.00 +0.33+0.06

−0.06

a
(0)
πΣ = +0.46 −0.01+0.07

−0.07 +0.04+0.01
−0.01 +0.49+0.07

−0.08

a
(1/2)
πΛ = −0.01 +0.03+0.01

−0.01 −0.11+0.00
+0.00 −0.09+0.01

−0.01

a
(1)
KN = −0.45 +0.40+0.04

−0.06 −0.28+0.06
−0.04 −0.33+0.10

−0.10

a
(0)
KN = +0.04 +0.04+0.27

−0.27 −0.06+0.00
+0.00 +0.02+0.27

−0.27

a
(1)

K̄N
= +0.20 +0.22+0.15

−0.16 −0.02+0.02
−0.03 + 0.36i +0.40+0.17

−0.19 + 0.36i

a
(0)

K̄N
= +0.53 +0.58+0.17

−0.20 +0.41+0.06
−0.09 + 0.22i +1.52+0.22

−0.29 + 0.22i

a
(3/2)
KΣ = −0.31 +0.33+0.17

−0.17 −0.06+0.03
−0.02 + 0.16i −0.04+0.20

−0.19 + 0.16i

a
(1/2)
KΣ = +0.47 +0.19+0.22

−0.24 +0.16+0.04
−0.06 + 0.04i +0.83+0.26

−0.30 + 0.04i

a
(3/2)

K̄Σ
= −0.22 +0.24+0.16

−0.18 −0.26+0.03
−0.02 + 0.16i −0.24+0.20

−0.20 + 0.16i

a
(1/2)

K̄Σ
= +0.34 +0.38+0.23

−0.23 +0.56+0.04
−0.06 + 0.04i +1.28+0.27

−0.29 + 0.04i

a
(1)
KΞ = +0.15 +0.34+0.17

−0.18 +0.22+0.02
−0.03 + 0.40i +0.72+0.19

−0.21 + 0.40i

a
(0)
KΞ = +0.66 +0.54+0.18

−0.22 +0.29+0.06
−0.10 + 0.24i +1.48+0.24

−0.32 + 0.24i

a
(1)

K̄Ξ
= −0.50 +0.44+0.04

−0.07 −0.27+0.07
−0.04 −0.33+0.11

−0.11

a
(0)

K̄Ξ
= −0.15 +0.24+0.30

−0.29 +0.38+0.00
+0.00 +0.48+0.30

−0.29

a
(1/2)
KΛ = −0.04 +0.48+0.18

−0.19 −0.10+0.00
+0.00 + 0.34i +0.34+0.18

−0.19 + 0.34i

a
(1/2)

K̄Λ
= −0.05 +0.48+0.18

−0.19 −0.10+0.00
+0.00 + 0.34i +0.32+0.18

−0.19 + 0.34i

a
(1/2)
ηN = −0.01 +0.24+0.23

−0.25 +0.08+0.00
+0.00 + 0.30i +0.31+0.23

−0.25 + 0.30i

a
(1/2)
ηΞ = −0.09 +0.83+0.26

−0.27 −0.01+0.00
+0.00 + 0.34i +0.73+0.26

−0.27 + 0.34i

a
(1)
ηΣ = −0.04 +0.23+0.08

−0.08 +0.06+0.00
+0.00 + 0.22i +0.25+0.08

−0.08 + 0.22i

a
(0)
ηΛ = −0.04 +0.29+0.16

−0.19 +0.07+0.00
+0.00 + 0.64i +0.32+0.16

−0.19 + 0.64i

TABLE II: Truncated results for the fit to a+
πN , a

(1)
KN , a

(0)
KN , and d0 = −0.996 GeV−1. All scattering lengths are given in units

of fm. Σ denotes the sum of all contributions from first, second, and third order.

3. Reordering procedure

We also have employed different sets of parameters
in (13), i.e. obtained from slightly different fitting proce-
dures, and used results from resonance saturation. None
of these show better agreement with the data and thus we
refrain from giving detailed results for these alternative
fits.

Another method to improve the convergence behav-
ior, called reordering of the chiral series, was proposed in
Ref. [4] and applied to SU(3) ChPT in Ref. [11]. There
the seemingly slow convergence of the chiral series for e.g
the Λ-mass is discussed and traced back to the question
whether the direct comparison of the different orders of
the chiral series for some observable is the best choice.

Instead it might be reasonable to express the results not
in bare quantities but in terms of physical observables.
From the practical point of view this means that the low-
energy constants are at least symbolically expanded in a
chiral series. As before we split the fitting procedure into
two steps. We rewrite the baryon mass in the chiral limit
and the symmetry breaking LECs as

m0 = m(0) + m(1) + m(2) + . . . ,

b0 = b
(0)
0 + b

(1)
0 + . . . ,

bD = b
(0)
D + b

(1)
D + . . . ,

bF = b
(0)
F + b

(1)
F + . . . . (16)

First of all we fix m(0) = 1.150 GeV, then m(1), b
(0)
0 , b

(0)
D
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and b
(0)
F are fitted to the physical values of the baryon

masses. Finally using these constants we fit the third-

order mass corrections including mIR/HB,(2), b
IR/HB,(1)
0 ,

b
IR/HB,(1)
D and b

IR/HB,(1)
F again to the baryon masses and

the πN sigma term in the IR and HB regime, respectively.
For the central values we obtain

m(1) = +0.02 GeV , mIR,(2) = +0.22 GeV ,

mHB,(2) = +0.25 GeV ,

b
(0)
0 = −0.02 GeV−1 , b

IR,(1)
0 = −0.22 GeV−1 ,

b
HB,(1)
0 = −0.25 GeV−1 ,

b
(0)
D = +0.07 GeV−1 , b

IR,(1)
D = −0.02 GeV−1 ,

b
HB,(1)
D = +0.11 GeV−1 ,

b
(0)
F = −0.20 GeV−1 , b

IR,(1)
F = −0.26 GeV−1 ,

b
HB,(1)
F = −0.66 GeV−1 .

(17)

In the same manner, the dynamical LECs are subjected
to a chiral expansion

Bi = B
(0)
i + B

(1)
i + . . . (i = 1, 2, 3, 4) . (18)

We fix the constants {B(0)
1 , . . . , B

(0)
4 } by fitting the re-

sults up to second chiral order to the experimental re-

sults for a+
πN , a

(1)
KN , a

(0)
KN , and d0 = −0.996 GeV−1. The

results read

B
(0)
1 = (+0.35 ± 0.00) GeV−1 ,

B
(0)
2 = (−0.20 ± 0.09) GeV−1 ,

B
(0)
3 = (−0.11 ± 0.09) GeV−1 ,

B
(0)
4 = (−0.04 ± 0.09) GeV−1 . (19)

Subsequently, using these LECs, we fix {B(1)
1 , . . . , B

(1)
4 }

by fitting the results for the scattering lengths up to third
order, including the truncated and the full loop correc-
tions, to the same experimental results. Thus at this or-
der we obtain two sets of constants for the heavy-baryon
and the covariant approach, respectively, as follows:

B
IR,(1)
1 = +0.49+0.08

−0.12 GeV−1 ,

B
IR,(1)
2 = −0.56+0.38

−0.33 GeV−1 ,

B
IR,(1)
3 = +0.31+0.42

−0.49 GeV−1 ,

B
IR,(1)
4 = −0.32+0.56

−0.53 GeV−1 ,

B
HB,(1)
1 = +0.31+0.02

−0.04 GeV−1 ,

B
HB,(1)
2 = −0.16+0.23

−0.22 GeV−1 ,

B
HB,(1)
3 = −0.15+0.25

−0.27 GeV−1 ,

B
HB,(1)
4 = −0.04+0.29

−0.28 GeV−1 . (20)

Using these reordered low-energy constants we obtain the
results for the (anti)kaon–nucleon scattering lengths as

presented in Tables III and IV. However no clear im-
provement of the convergence behavior is achieved by
reordering the chiral series (this statements also holds
for the other channels not given in the tables). On the
other hand using the formulas from Ref. [26] the con-
vergence rate of the chiral series for the baryon masses
is tremendously improved [11], which we also checked.
Also the convergence of the chiral series for the baryon
magnetic moments and axial couplings was shown there
to be improved by the reordering procedure. The differ-
ent response of the chiral series for the scattering lengths
is presumably related to the fact that we did not con-
sider the local dimension-three operators with adjustable
LECs here. This requires further investigation.

4. Discussion

The conclusion to be drawn based on the numerical
evaluation above is that the chiral series of the scatter-
ing lengths does not appear to converge in general. The
best convergence rate is observed for the pion channels
in the truncated approach. The reason for the slower
convergence for SU(3) compared to SU(2) is clearly the
magnitude of the expansion parameter, being MK/m0 ∼
Mη/m0 ∼ 1/2 and Mπ/m0 ∼ 1/7 for the SU(3) and
SU(2) case, respectively. Moreover for the truncated
(HBChPT) result, the convergence of the chiral series
is improved at least for the pion channels in compari-
son to the full results. A similar observation was made
in Ref. [32] in the analysis of pion–nucleon scattering in
both schemes. On the other hand in Ref. [25] the loop
corrections for the baryon masses within SU(3) ChPT
seem to be smaller in the infrared than in the HB ap-
proach. Of course, for a definitive statement on the
convergence of the chiral expansion one needs to include
the so-far neglected finite pieces of the local dimension-
three operators. These certainly are expected to lead to
cancellations at third order, reducing the overall size of
these corrections. This needs to be checked explicitly
in future calculations. Our purpose here, however, was
to simply compare the results of the covariant and the
heavy-baryon approach under the same set of assump-
tions. To further make progress in SU(3) meson–baryon
scattering, unitary coupled-channel calculations properly
matched to the ChPT amplitudes derived here should be
performed. Furthermore, the explicit representation of
the scattering amplitudes in SU(2) and SU(3) allows us
to address the issue of matching, which we now turn to
and consider the central part of this work.

III. MATCHING TO SU(2)

A vast body of work has been performed on matching
the two different chiral expansions in the meson sector,
beginning with leading-order matching of the O(q4) low-
energy constants [22]. Several constants have by now
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Channel = O(q1) +O(q2) +O(q3)IR
P

IR

a
(1)
KN = −0.45 +0.12+0.00

+0.00 +0.00+0.30
−0.30 −0.33+0.30

−0.30

a
(0)
KN = +0.04 −0.02+0.14

−0.14 +0.00+0.76
−0.76 +0.02+0.90

−0.90

a
(1)

K̄N
= +0.20 +0.05+0.07

−0.07 −0.09+0.43
−0.49 + 0.18i +0.16+0.50

−0.56 + 0.18i

a
(0)

K̄N
= +0.53 +0.19+0.07

−0.07 +0.39+0.52
−0.63 + 0.22i +1.11+0.59

−0.70 + 0.22i

TABLE III: Full result for the reordered fit to a+
πN , a

(1)
KN , a

(0)
KN , and d0 = −0.996GeV−1. All scattering lengths are given in

units of fm. Σ denotes the sum of all contributions from first, second, and third order.

Channel = O(q1) +O(q2) +O(q3)HB

P

HB

a
(1)
KN = −0.45 +0.12+0.00

+0.00 +0.00+0.10
−0.10 −0.33+0.10

−0.10

a
(0)
KN = +0.04 −0.02+0.14

−0.14 +0.00+0.40
−0.40 +0.02+0.54

−0.54

a
(1)

K̄N
= +0.20 +0.05+0.07

−0.07 +0.15+0.24
−0.26 + 0.36i +0.40+0.31

−0.33 + 0.36i

a
(0)

K̄N
= +0.53 +0.19+0.07

−0.07 +0.80+0.29
−0.35 + 0.22i +1.52+0.36

−0.42 + 0.22i

TABLE IV: Truncated results for the reordered fit to a+
πN , a

(1)
KN , a

(0)
KN , and d0 = −0.996 GeV−1. All scattering lengths are

given in units of fm. Σ denotes the sum of all contributions from first, second, and third order.

been matched at two-loop level [33, 34, 35, 36, 37], and
there are results for the electromagnetic [38, 39, 40] and
the anomalous [41] sector. In all cases, the relations
found can be used to transfer information on the coupling
constants from the two-flavor theory to the three-flavor
one and vice versa. Typically, more precise phenomeno-
logical information on the SU(2) sector of the theory can
be used to constrain certain linear combinations of SU(3)
low-energy constants, while model estimates (like reso-
nance saturation) are often performed in SU(3) and have
to be translated in the opposite direction in order to be
used in SU(2) calculations.

Remarkably little is known about such matching rela-
tions in ChPT with baryons, beyond the trivial leading-
order relations as the well-known one for the axial cou-
pling constants gA = D+F +O(M2

K). A major study has
been performed on the baryon masses up to O(q4) [42].
Here we complete the matching for all constants of the
O(q2) pion–nucleon Lagrangian to the first nontrivial or-
der, including O(MK) corrections.

A. Low-energy constants in the pion–nucleon
sector

Pion–nucleon scattering can be analyzed in the frame-
work of SU(2) as well as SU(3) ChPT. The second-order
SU(2) ChPT pion–nucleon Lagrangian reads

L(1+2)
πN = N̄

{

i /D− ◦
mN +

g

2
/uγ5 + c1〈χ+〉

− c2

8
◦
m

2

N

(

〈uµuν〉{Dµ, Dν} + h.c.
)

+
c3

2
〈uµuµ〉 +

c4

4
[uµ, uν ]iσµν + c5χ̃+

+
1

8
◦
mN

(

c6F+
µν + c7〈F+

µν〉
)

σµν
}

N . (21)

χ = 2B diag(mu, md) + . . . now contains the light quark
mass matrix only, B is related to the light (up, down)

quark condensate in the chiral limit, and Õ = O−〈O〉/2

refers to the traceless part of the operator O.
◦
mN

and g are the nucleon mass and axial coupling con-
stant in the chiral limit, respectively. For an external
electromagnetic field Aµ, the field strength tensor reads
Fµν = (∂µAν − ∂νAµ)Q with the nucleon charge matrix
Q = e diag(1, 0), and F+

µν = u†Fµνu + uFµνu†. Out of
the second-order LECs in (21), only c1−4 feature in πN
scattering in the isospin limit, so we include c5−7 and the
matching relations for those obtained from other sources
for completeness.

The very meaning of the low-energy constants in effec-
tive field theories goes back to the fact that the heavy
degrees of freedom are integrated out. In this way, the
strange quark can be integrated out such that three-flavor
ChPT reduces to the two-flavor theory. This means that
to obtain the next-to-leading-order matching relations
for the LECs we calculate the scattering amplitude for
pion–nucleon scattering to one loop, where we only take
SU(3)/SU(2) intermediate states into account, which can
be represented symbolically as

∑

ci =
∑

bi + F [SU(3)/SU(2)-states] + O(M2
K) ,

(22)

where the loop functional F contains contributions from
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the loop diagrams in Fig. 3 as well as wave-function renor-
malization.

To assign the results to the various structures in (21)
one realizes first of all that the LECs can be distinguished
by their associated Dirac structures, i.e. c4 (b5, b6, b7) ap-
pears in association with σµν , in contrast to the remain-
ing LECs escorting trivial Dirac structures. The latter
can be identified as the coefficients of the second-order
energy structures (t−2M2

π), M2
π and X 2 := (s−m2

0)
2. To

assign the one-loop contributions to the LECs correctly

we first modify (1) since T b,j,i,a
1 and T b,j,i,a

2 do not indi-
vidually fulfill the power counting. This did not matter
in Sec. II since the lowest-order contributions cancelled
for the scattering lengths. Here we use

T b,j,i,a = T b,j,i,a
3 + [/qj

, /qi
]T b,j,i,a

4 , (23)

T3 = T1 +
(

m0 +
s − u

4m0

)

T2 , T4 = − 1

4m0
T2 .

Now for a more delicate matter. The loop integrals must
be evaluated properly, i.e. taking into account the dif-
ferent expansion parameters in both theories. We start
with the loop integrals as defined in IR-regularized SU(3)
ChPT. Having performed the loop integration, we ex-
pand the integrand of the remaining parameter integral,
see also Appendix A1, to a certain order in (t − 2M2

π),
M2

π , and X 2. Afterwards we expand the final result in
MK,η, which is necessary because the one-loop result only
fully determines the first-order corrections to the match-
ing relations. This procedure is called double-scale ex-
pansion, where we assume m0 ≫ MK,η ≫ Mπ. The
results for the expanded integrals are presented in Ap-

pendix B.
Here we present the next-to-leading-order constraints

on the LECs of SU(2) ChPT c1−7. The expression for c5

is given in Ref. [42], those for c6/7 were derived from the
SU(3) analysis of baryon form factors in Ref. [43], but ul-
timately go back to Ref. [44]. The relation for c1 can be
uniquely determined from meson–baryon scattering – the
result is fully consistent with the analysis of the baryon
masses [42]. The results for c2−4 are new and have not
been given before. For completeness, we also include the

matching relations for the leading-order constants
◦
mN

and g. We recall that due to the Gell-Mann–Okubo re-
lation

M2
η =

4

3
M2

K + O(M2
π) , (24)

only one heavy meson mass is needed. Moreover we
use [22]

lr4 = 8Lr
4 + 4Lr

5 −
1

64π2

(

2 log
MK

µ
+ 1

)

. (25)

Finally, in order to complete the matching for the mag-
netic moments LECs c6/7, we have to amend the La-

grangian L(2)
φB (8) with the corresponding SU(3) struc-

tures,

L(2)
φB = . . . + b12/13

〈

B̄σµν [F+
µν , B]∓

〉

, (26)
where F+

µν = u†Fµνu + uFµνu†, Fµν = (∂µAν − ∂νAµ)Q
with the quark charge matrix Q = e diag(2,−1,−1)/3.
Altogether the matching relations read

◦
mN = m0 − 4M2

K

(

b0 + bD − bF

)

− M3
K

48πF 2
π

[

5D2 − 6DF + 9F 2 +
4

3
√

3
(D − 3F )2

]

+ O(M4
K) ,

g = D + F + O(M2
K) , c1 = b0 +

bD

2
+

bF

2
+

MK

256πF 2
π

[

5D2 − 6DF + 9F 2 +
2

3
√

3
(D − 3F )2

]

+ O(M2
K) ,

c2 = b8 + b9 + b10 + 2b11 −
MK

128πF 2
π

[

6 +
19

3
D4 + 4D3F +

58

3
D2F 2 − 12DF 3 + 25F 4 − 8(D − 3F )2(D + F )2

3
√

3

]

+ O(M2
K) ,

c3 = b1 + b2 + b3 + 2b4 +
MK

128πF 2
π

[

5D2 − 6DF + 9F 2 +
19

3
D4 + 4D3F +

58

3
D2F 2 − 12DF 3 + 25F 4

+
8(D − 3F )2(D + F )2

3
√

3

]

+ O(M2
K) ,

c4 = 4(b5 + b6) +
MK

96πF 2
π

[

D2 − 6DF − 3F 2 − 9

2
D4 − 10D3F + D2F 2 − 18DF 3 − 33

2
F 4 − 2(D − 3F )2(D + F )2√

3

]

+ O(M2
K) ,

c5 = bD + bF − MK

128πF 2
π

[

D2 − 6DF − 3F 2 +
8

3
√

3
(D − 3F )(D + F )

]

+ O(M2
K) ,

c6
◦
mN

= 8
(

b12 + b13

)

+
MK

24πF 2
π

[

D2 − 6DF − 3F 2
]

+ O(M2
K) ,

c7
◦
mN

= −16

3
b13 −

MK

8πF 2
π

(D − F )2 + O(M2
K) . (27)
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The shifts ∆ci of O(MK) in the matching relations (27)
are finite and calculable in terms of well-known parame-
ters. In particular, for the constants relevant in πN scat-
tering, we find ∆c1 = +0.2GeV−1, ∆c2 = −2.1GeV−1,
∆c3 = +1.6GeV−1, ∆c4 = +2.0GeV−1, hence these
shifts are rather sizeable.

B. Low-energy constants in the pion–hyperon
sector

Chiral SU(2) has been used to describe hyperon prop-
erties in Refs. [8, 9], focusing on the chiral expansion
of the masses and axial coupling constants. In the
same spirit as the SU(2) description of pion–kaon sys-
tems [6, 45], one expects the convergence properties of
the theory to be improved; on the other hand, as one is
restricted to strangeness-conserving processes, there are
typically less observables related by chiral symmetry, or
more low-energy constants to be fixed.

In the following, we construct the complete next-to-
leading order Lagrangians for the πΣ, πΛ, and πΞ sys-
tems. In analogy to the πN system, we denote the
second-order LECs by cΣ

i , cΛ
i , and cΞ

i , respectively. The
leading-order matching relations on these constants are
already determined by the Lagrangians themselves. The
next-to-leading-order is fully determined by the analy-
sis of the one-loop corrections in the SU(3) and SU(2)
theories in the sense of (22), where we refer to the corre-
sponding subgroup SU(2) of the SU(3). For the results
of the expanded loop integrals, see Appendices A 3 and
B.

We start out with the strangeness S = 1 sector of
the theory. Although the Σ and Λ hyperons belong to
different isospin multiplets, strangeness-neutral currents
induce transitions between the two sectors, such that the
Lagrangian is of the form

LS=1 = LπΛ + LπΣ + LπΛΣ . (28)

We find

L(1+2)
πΛ = Λ̄

{

i/∂− ◦
mΛ +cΛ

1 〈χ+〉

− cΛ
2

8
◦
m

2

Λ

(

〈uµuν〉{∂µ, ∂ν} + h.c.
)

+
cΛ
3

2
〈uµuµ〉 +

cΛ
7

8
◦
mΛ

〈F+
µν〉σµν

}

Λ , (29)

L(1+2)
πΣ = 〈Σ̄

(

i /D− ◦
mΣ

)

Σ〉 +
gΣ

2
〈Σ̄γµγ5[uµ, Σ]〉

+ cΣ
1 〈χ+〉〈Σ̄Σ〉

− cΣ
2a

8
◦
m

2

Σ

(

〈uµuν〉〈Σ̄{Dµ, Dν}Σ〉 + h.c.
)

− cΣ
2b

8
◦
m

2

Σ

(

〈Σ̄uν〉〈uµ{Dµ, Dν}Σ〉 + h.c.
)

+
cΣ
3a

2
〈Σ̄Σ〉〈uµuµ〉 +

cΣ
3b

2
〈Σ̄uµ〉〈uµΣ〉

+
cΣ
4

4
〈Σ̄uµ〉〈uνΣ〉iσµν + cΣ

5 〈Σ̄[χ̃+, Σ]〉 (30)

+
cΣ
6

8
◦
mΣ

〈Σ̄σµν [F̃+
µν , Σ]〉 +

cΣ
7

8
◦
mΣ

〈Σ̄σµνΣ〉〈F+
µν〉 ,

L(1+2)
πΛΣ =

(gΛΣ

2
〈Σ̄uµ〉γµγ5Λ + h.c.

)

+
cΛΣ
6

4(
◦
mΛ +

◦
mΣ)

(

〈Σ̄F+
µν〉σµνΛ + h.c.

)

. (31)

We use the field strength tensor Fµν = (∂µAν − ∂νAµ)Q,
where Q = e diag(2,−1)/3 is the SU(2) quark charge ma-

trix. As the Λ is an isoscalar particle, L(1+2)
πΛ contains less

terms than the corresponding pion–nucleon Lagrangian;
note, in particular, the absence of a covariant derivative
and of a axial-vector-type term. As the I = 1 triplet of
Σ fields,

Σ =
1√
2

(

Σ0
√

2Σ+
√

2Σ− −Σ0

)

, (32)

transforms in the adjoint representation, (30) has been
constructed starting from the SU(3) Lagrangian, using
additional matrix trace relations for SU(2). We find that
only the c2 and c3 type terms are “doubled” compared
to the pion–nucleon Lagrangian, otherwise the number of

terms stays the same. Finally for L(1+2)
πΛΣ , we assume the

mass term to be diagonalized for the physical Λ and Σ0

fields already, hence we do not include a term ∝ 〈Σ̄χ̃+〉Λ.
We briefly comment on the different (chiral limit)

masses
◦
mΣ,

◦
mΛ in the Lagrangians (29), (30). In the

framework of chiral SU(3), one finds
◦
mΣ − ◦

mΛ= O(M2
K)

(see the matching formulas below), so the mass differ-
ence does not vanish in the SU(2) chiral limit, and for-

mally one would have to treat
◦
mΣ − ◦

mΛ as a large quan-
tity in chiral SU(2). However for physical values of the
quark masses, this mass difference is smaller than the
pion mass, and the authors of Ref. [8] treat it, in a phe-
nomenological counting scheme, as O(Mπ) (comparable
to the inclusion of the decuplet, where one often counts
the decuplet–octet mass difference as O(Mπ)), a proce-
dure we will also adopt in the following. This count-
ing scheme may become problematic when considering a
regime with Mπ ≪ mΣ − mΛ ≈ 87 MeV, but for phys-
ical (and larger) pion masses, it presents a very useful
approach.

The matching relations for the terms in L(1+2)
πΛ includ-

ing terms of O(MK) read
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◦
mΛ = m0 − 4M2

K

(

b0 +
4

3
bD

)

− M3
K

24πF 2
π

[

(

1 +
8

3
√

3

)

D2 + 9F 2

]

+ O(M4
K) ,

cΛ
1 = b0 +

bD

3
+

MK

128πF 2
π

[

(

1 +
4

3
√

3

)

D2 + 9F 2

]

+ O(M2
K) ,

cΛ
2 =

4

3
b10 + 2b11 −

3MK

32πF 2
π

[

1 +
(11

2
+

16

3
√

3

)D4

9
+

41

9
D2F 2 +

3

2
F 4

]

+ O(M2
K) ,

cΛ
3 =

4

3
b3 + 2b4 +

3MK

32πF 2
π

[

D2

6
+

3

2
F 2 +

(11

2
+

16

3
√

3

)D4

9
+

41

9
D2F 2 +

3

2
F 4

]

+ O(M2
K) ,

cΛ
7

◦
mΛ

= −8b13 +
3MK

4πF 2
π

DF + O(M2
K) . (33)

For the next-to-leading-order constraints on the low-energy constants in the πΣ Lagrangian we find

◦
mΣ = m0 − 4M2

Kb0 −
M3

K

8πF 2
π

[

(

1 +
8

3
√

3

)

D2 + F 2

]

+ O(M4
K) , gΣ = 2F + O(M2

K) ,

cΣ
1 = b0 + bD +

3MK

128πF 2
π

[

(

1 +
4

9
√

3

)

D2 + F 2

]

+ O(M2
K) ,

cΣ
2a = b8 +

b11

2
− MK

128πF 2
π

[

1 +
3

2
D4 +

(

1 +
32

3
√

3

)

D2F 2 +
19

2
F 4

]

+ O(M2
K) ,

cΣ
2b =

1

2
(b10 − b8) −

MK

96πF 2
π

[

(D2 − 3F 2)F 2 +
2D2(D2 − 6F 2)

3
√

3

]

+ O(M2
K) ,

cΣ
3a = 2b1 + b4 +

3MK

128πF 2
π

[

D2 + F 2 + D4 +
2

3

(

1 +
32

3
√

3

)

D2F 2 +
19

3
F 4

]

+ O(M2
K) ,

cΣ
3b = 2b3 − b1 +

MK

24πF 2
π

[

(D2 − 3F 2)F 2 +
2D2(D2 − 6F 2)

3
√

3

]

+ O(M2
K) ,

cΣ
4 = 4b5 + b7 −

MK

32πF 2
π

[

D2 + F 2 − D4

2
+
(

19 +
8√
3

)D2F 2

3
+

7

2
F 4

]

+ O(M2
K) ,

cΣ
5 = bF +

3MK

32πF 2
π

(

1 +
8

9
√

3

)

DF + O(M2
K) ,

cΣ
6

◦
mΣ

= 8b12 −
MK

8πF 2
π

(D2 + F 2) + O(M2
K) ,

cΣ
7

◦
mΣ

= 8b13 −
3MK

4πF 2
π

DF + O(M2
K) . (34)

Finally, the matching of the transition couplings does not contain new information from meson–baryon scattering, we
simply have

gΛΣ =
2√
3
D + O(M2

K) ,
cΛΣ
6

◦
mΛ +

◦
mΣ

=
4√
3
b13 −

DF

8
√

3πF 2
π

MK + O(M2
K) . (35)

The relations for c5-type terms have been calculated from the results for baryon masses in Ref. [42], while the ones
for c6- and c7-type constants use the analysis of hyperon form factors in Ref. [43].

We finally turn to the S = 2 sector. As the Ξ0 and the Ξ− are an isospin doublet, the Lagrangian for the πΞ system

can be copied immediately from L(2)
πN ,

L(1+2)
πΞ = Ξ̄

{

i /D− ◦
mΞ +

gΞ

2
/uγ5 + cΞ

1 〈χ+〉 −
cΞ
2

8
◦
m

2

Ξ

(

〈uµuν〉{Dµ, Dν} + h.c.
)

+
cΞ
3

2
〈uµuµ〉

+
cΞ
4

4
[uµ, uν ]iσµν + cΞ

5 χ̃− +
1

8
◦
mΞ

(

cΞ
6F+

µν + cΞ
7 〈F+

µν〉
)

σµν

}

Ξ , (36)
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where we have used Fµν = (∂µAν − ∂νAµ)QΞ, QΞ = e diag(0,−1). The matching relations read

◦
mΞ = m0 − 4M2

K

(

b0 + bD + bF

)

− M3
K

48πF 2
π

[

5D2 + 6DF + 9F 2 +
4

3
√

3
(D + 3F )2

]

+ O(M4
K) ,

gΞ = D − F + O(M2
K) , cΞ

1 = b0 +
bD

2
− bF

2
+

MK

256πF 2
π

[

5D2 + 6DF + 9F 2 +
2

3
√

3
(D + 3F )2

]

+ O(M2
K) ,

cΞ
2 = b8 − b9 + b10 + 2b11 −

MK

128πF 2
π

[

6 +
19

3
D4 +

58

3
D2F 2 + 25F 4 − 4DF (D2 − 3F 2) +

8(D − F )2(D + 3F )2

3
√

3

]

+ O(M2
K) ,

cΞ
3 = b1 − b2 + b3 + 2b4 +

MK

128πF 2
π

[

5D2 + 6DF + 9F 2 +
19

3
D4 +

58

3
D2F 2 + 25F 4 − 4DF (D2 − 3F 2)

+
8(D − F )2(D + 3F )2

3
√

3

]

+ O(M2
K) ,

cΞ
4 = 4(b6 − b5) −

MK

96πF 2
π

[

D2 + 6DF − 3F 2 − 9

2
D4 + 10D3F + D2F 2 + 18DF 3 − 33

2
F 4 − 2(D − F )2(D + 3F )2√

3

]

+ O(M2
K) ,

cΞ
5 = −bD + bF +

MK

128πF 2
π

[

D2 + 6DF − 3F 2 +
8

3
√

3
(D + 3F )(D − F )

]

+ O(M2
K) ,

cΞ
6

◦
mΞ

= 8
(

b12 − b13

)

+
MK

24πF 2
π

(D2 + 6DF − 3F 2) + O(M2
K) ,

cΞ
7

◦
mΞ

=
16

3
b13 −

MK

8πF 2
π

(D + F )2 + O(M2
K) . (37)

If one evaluates the O(MK) shifts in the matching rela-
tions (33), (34), (37) one in general finds sizeable shifts
in particular in the c2- and c3-type couplings, which tend
to cancel to some extent in the combinations featuring in
the pion–hyperon scattering lengths.

C. Threshold amplitudes in SU(2) and low-energy
theorems

An interesting application of the above results is the
representation of the pion–hyperon threshold amplitudes
in chiral SU(2). As it will turn out below, these can be
used to prove low-energy theorems for certain of these
amplitudes, comparable to the well-known one for the
isovector pion–nucleon scattering length, or the isovec-
tor pion–kaon scattering length proven similarly in chiral
SU(2) for kaons [6]. Although experimental verifications
of these pion–hyperon low-energy theorems may be very
difficult, they may become testable on the lattice soon.

In pion–nucleon scattering, isospin-even and -odd am-
plitudes are given in terms of those of definite isospin
as

T +(ν, t) =
1

3

(

T (1/2) + 2T (3/2)
)

,

T−(ν, t) =
1

3

(

T (1/2) − T (3/2)
)

, (38)

where ν = s − u. T±(ν, t) are even/odd under crossing

ν ↔ −ν, leading to polynomial parts of the form

T +
pol(ν, t) = α+

0 + α+
1 t + α+

2 ν2 + α+
3 t2 + . . . ,

T−
pol(ν, t) = ν

(

α−
0 + α−

1 t + α−
2 ν2 + . . .

)

. (39)

At threshold, νthr = 4mNMπ, tthr = 0, therefore

T +
pol(νthr, 0) =

∞
∑

i=1

γ+
i M2i

π ,

T−
pol(νthr, 0) =

∞
∑

i=1

γ−
i M2i−1

π . (40)

In particular, γ−
1 = 1/(2F 2

π) [46]. Deviations from this
scheme, e.g. O(M3

π) contributions in T +
πN , are nonana-

lytic and due to pion loops. The important point about
the low-energy theorem for γ−

1 is that it does not contain
any unknown constants, hence in an SU(3) calculation of
this quantity, it does not get renormalized by large kaon-
mass effects. Corrections to a−

πN are of O(M3
π) even then

and should remain moderate in size.
The well-known pion–nucleon threshold amplitudes up

to O(M3
π) read

T +
πN =

M2
π

F 2
π

{

− g2

4mN
+ 2(c2 + c3 − 2c1) +

3g2Mπ

64πF 2
π

+ O
(

M2
π

)

}

,

T−
πN =

Mπ

2F 2
π

{

1 +
g2M2

π

4m2
N

+
M2

π

8π2F 2
π

(

1 − 2 log
Mπ

µ

)
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+ M2
πdr

πN (µ) + O
(

M4
π

)

}

. (41)

The vanishing of the term of O(M4
π) in T−

πN was found
in Ref. [47]. We have not included O(q3) counterterms in
our SU(3) calculation, and therefore refrain from giving
matching relations at that order. We only add a generic
O(q3) counterterm ∝ dπN (µ) to the isovector scattering
length that cancels divergence and scale dependence of
the loop contributions (in Ref. [47], this generic LEC was
called Br(µ)). Of course in the case of πN scattering, this
combination is known [48, 49],

dr
πN = 8

(

dr
1 + dr

2 + dr
3 + 2dr

5

)

[

+
2

F 2
π

lr4

]

(42)

(where the inclusion of the term proportional to lr4 de-
pends on the convention of the Lagrangians used [50,
51]). We only remark that kaon loops contribute a term
to the matching of dr

πN according to

dr
πN = − 1

16π2F 2
π

(

1 + 2 log
MK

µ

)

+ . . . . (43)

Next we turn to the SU(2) representations of the pion–
hyperon scattering amplitudes at threshold. Isospin and
crossing symmetry dictate the following structure of the
πΣ scattering amplitude:

T
(

πiΣa → πjΣb
)

= T̄πΣ(ν, t)δaiδbj + T̄πΣ(−ν, t)δajδbi

+ T̃πΣ(ν, t)δabδij . (44)

These are related to amplitudes of definite isospin by

T
(0)
πΣ = 3T̄πΣ(ν, t) + T̄πΣ(−ν, t) + T̃πΣ(ν, t) ,

T
(1)
πΣ = T̃πΣ(ν, t) − T̄πΣ(−ν, t) ,

T
(2)
πΣ = T̃πΣ(ν, t) + T̄πΣ(−ν, t) . (45)

The combinations of amplitudes odd and even in ν (anal-
ogous to T±

πN) are therefore

T̄−
πΣ(ν, t) := T̄πΣ(ν, t) − T̄πΣ(−ν, t)

=
1

3
T

(0)
πΣ +

1

2
T

(1)
πΣ − 5

6
T

(2)
πΣ ,

T̄ +
πΣ(ν, t) := T̄πΣ(ν, t) + T̄πΣ(−ν, t)

=
1

3
T

(0)
πΣ − 1

2
T

(1)
πΣ +

1

6
T

(2)
πΣ , (46)

and T̃πΣ(ν, t) is also even. At threshold, where νthr =

4mΣMπ, our results read

T̃πΣ =
M2

π

F 2
π

{

− g2
Σ

4mΣ
+ 4
(

2cΣ
2a + cΣ

3a − cΣ
1

)

(µ)

+
3g2

ΣΛMπ

64πF 2
π

f (mΣ−mΛ, Mπ, µ) + O
(

M2
π

)

}

,

T̄ +
πΣ =

M2
π

F 2
π

{

g2
Σ

4mΣ
− g2

ΣΛ

2(mΛ + mΣ)
+ 4
(

4cΣ
2b + cΣ

3b

)

(µ)

+
3[g2

Σ − g2
ΣΛf (mΣ−mΛ, Mπ, µ)]Mπ

32πF 2
π

+ O
(

M2
π

)

}

,

T̄−
πΣ =

2Mπ

F 2
π

{

1 +
g2
ΣM2

π

16m2
Σ

+
g2
ΣΛM2

π

4(mΛ + mΣ)2
+ M2

πdr
πΣ(µ)

+
M2

π

8π2F 2
π

(

1 − 2 log
Mπ

µ

)

+ O
(

M3
π

)

}

, (47)

where

f (δ, Mπ, µ) =
2

π

√

1 − δ2

M2
π

arccos
(

− δ

Mπ

)

+
δ

πMπ

(

2 log
Mπ

µ
− 1

3

)

. (48)

The indicated dependence of the constants cΣ
i on

the renormalization scale µ compensates the one
from f (mΣ − mΛ, Mπ, µ), where the corresponding β-
functions are suppressed by the small parameter mΣ −
mΛ. We find that there exists a similar low-energy theo-
rem for T̄−

πΣ at threshold as for T−
πN : the leading term in

the pion-mass expansion is fixed simply by Fπ , and cor-
rections are suppressed by a relative factor of M2

π . Note
that the Λ − Σ transition generates terms of order M4

π

in T̄−
πΣ in contrast to the pion–nucleon case. Up to or-

der M3
π , however, there is no nonanalytic dependence of

T−
πΣ on mΣ−mΛ: such terms, as encoded in the function

f(mΣ −mΛ, Mπ, µ) only feature in the isoscalar scatter-
ing lengths in (47).

The πΛ scattering amplitude

T
(

πiΛ → πjΛ) = TπΛ(ν, t)δij (49)

is even under crossing ν ↔ −ν and therefore, accord-
ing to the arguments in the preceding section, starts at
O(M2

π) at threshold. This is obvious also from a differ-
ent point of view: no Weinberg–Tomozawa term exists.
Thus the result reads

TπΛ =
M2

π

F 2
π

{

− g2
ΣΛ

2(mΛ + mΣ)
+ 2
(

cΛ
2 + cΛ

3 − 2cΛ
1

)

(µ)

+
3g2

ΣΛMπ

64πF 2
π

f (mΛ−mΣ, Mπ, µ) + O
(

M2
π

)

}

, (50)

with f (mΛ − mΣ, Mπ, µ) as defined in (48).
Finally, from the point of view of isospin, crossing etc.,

πΞ scattering is identical to the πN case, hence the odd

and even combinations of amplitudes are identical to
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those in (40). The result of the calculation is also for-
mally equal to the one from the pion–nucleon case and
reads

T +
πΞ =

M2
π

F 2
π

{

− g2
Ξ

4mΞ
+ 2(cΞ

2 + cΞ
3 − 2cΞ

1 ) +
3g2

ΞMπ

64πF 2
π

+ O
(

M2
π

)

}

,

T−
πΞ =

Mπ

2F 2
π

{

1 +
g2
ΞM2

π

4m2
Ξ

+
M2

π

8π2F 2
π

(

1 − 2 log
Mπ

µ

)

+ M2
πdr

πΞ(µ) + O
(

M4
π

)

}

. (51)

Again, T−
πΞ obeys the same type of low-energy theorem

as T−
πN . We remark that the O(q3) couplings dr

πΣ, dr
πΞ

receive the same kaon-loop contributions when matching
to SU(3) as dr

πN in (43).

D. Chiral extrapolations

We wish to comment on the consequences of the low-
energy theorems for the isospin-odd threshold amplitudes
T−

πN , T̄−
πΣ, and T−

πΞ, for studies of these quantities on
the lattice, where typically pion masses larger than the
physical ones are employed.

If we take into account the pion-mass dependence of
Fπ,

Fπ = F

{

1 +
M2

π

F 2

(

lr4 −
1

8π2
log

Mπ

µ

)}

+O
(

M4
π

)

, (52)

where F is the pion decay constant in the SU(2) chiral
limit, T−

πN can be rewritten from (41) in the form

T−
πN =

Mπ

2F 2

{

1 + M2
πdeff

πN + O(M4
π)
}

, (53)

hence there is no M3
π log Mπ term. The low-energy con-

stant lr4 can be determined from a dispersive analysis
of the scalar form factor of the pion [52], leading to
F = (86.9 ± 0.2)MeV. With this information, we can
fix the effective coupling deff

πN from the experimental in-
formation on the isovector πN scattering length [53],
a−

πN = (85.2 ± 1.8) × 10−3M−1
π , leading to deff

πN =

(−2.4 ± 1.0)GeV−2, which is perfectly of natural order.
In Fig. 5, we compare the pion-mass dependence of

T−
πN , with deff

πN varying within its error range, to the
parameter-free current algebra prediction. At Mπ =
300 MeV, the corrections are still moderate, about (−20±
10)%. From dimensional arguments, one would expect
the omitted O(M5

π) terms to contribute less than 5% at
such masses. T−

πN is therefore a very stable quantity un-

der chiral corrections. This is in contrast to T +
πN , which

is afflicted by not very precisely known counterterms al-
ready at leading order. We wish to remark again that
the omission of explicit dynamical ∆(1232) contributions
does not necessarily invalidate the chiral extrapolation
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Mπ [GeV]
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FIG. 5: The threshold amplitude T−
πN for varying pion mass

0 ≤ Mπ ≤ 350 MeV. The full line denotes the parameter-free
leading-order result, the dashed band is the expression valid
up-to-and-including O(M4

π), fitted to the experimental value
(marked by dotted lines) extracted in Ref. [53] at the physical
pion mass.

for S-wave scattering lengths: as can be checked from
the explicit expressions in Ref. [16], the effects of π∆ in-
termediate states are entirely smooth and can be well ap-
proximated by tadpole-type loops, with the ∆ propagator
shrunk to a point. In fact, there are no π∆ loop contri-
butions to T−

πN up to O(ǫ3) in the small-scale expansion.
Compare also the smooth pion-mass dependence of the
nucleon and ∆ masses in Ref. [54].

For lack of data to fix the respective O(M3
π) constants

deff
πΣ, deff

πΞ, we refrain from showing chiral extrapolations
for T̄−

πΣ and T−
πΞ graphically. Their pion-mass depen-

dence is completely analogous to (53),

T̄−
πΣ =

2Mπ

F 2

{

1 + M2
πdeff

πΣ + O(M3
π)
}

,

T−
πΞ =

Mπ

2F 2

{

1 + M2
πdeff

πΞ + O(M4
π)
}

, (54)

and can be expected to be similarly stable. [One caveat
in the case of the πΣ scattering length is that it becomes
complex for very small pion masses, when the Σ becomes
unstable against strong decays into πΛ. However, for
practical purposes (i.e., chiral extrapolations in the con-
text of lattice simulations), problems with pion masses
less than half the physical ones seem somewhat academic
at present.] We wish to point out once more that the re-
lations (54) are a consequence of chiral SU(2) symmetry:
an exploitation of three-flavor ChPT does not guarantee
that there are no corrections of O(M2n

K ) to the leading
term.
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APPENDIX A: ONE-LOOP INTEGRALS

1. Threshold expansion

a. One-point functions

In the purely mesonic sector one finds, using dimensional regularization

IM (M2
X) :=

1

i

∫

IR

ddk

(2π)d

1

M2
X − k2

= 2M2
X

(

λ +
1

16π2
log

MX

µ

)

, (A1)

λ =
µd−4

(4π)d/2

(

1

d − 4
− 1

2

(

log 4π − γ + 1
)

)

.

The subscript IR means that the infrared-regular part is neglected. µ is the dimensional regularization scale and MX

the mass of the meson involved. Here and in the following, we suppress the infinitesimal imaginary parts −iǫ in all
propagators for the sake of brevity.

b. Two-point functions

The two-point function with two meson propagators can be calculated in closed form. We use the following
combinations of momenta relevant for the calculation at hand:

Σµ = (pa + qi)µ = (pb + qj)µ , ∆µ = (qj − qi)µ = (pa − pb)µ , Qµ = (pa + pb)µ . (A2)

For the two-meson scalar loop integral one obtains

IMM (t, M2
X , M2

Y ) :=
1

i

∫

IR

ddk

(2π)d

1

(M2
X − k2)(M2

Y − (k − ∆)2)

= −2λ − 1

32π2t

{

t

(

−2 + log
M2

X

µ2
+ log

M2
Y

µ2

)

+ (M2
X − M2

Y ) log
M2

X

M2
Y

−
√

λ(M2
Y , M2

X , t) artanh

(

√

λ(M2
Y , M2

X , t)

−t + (MX + MY )2

)}

, (A3)

where we use Källén triangle function λ(a, b, c) := a2 + b2 + c2 − 2(ab + bc + ac) and t := ∆2. The representation
above is useful and unambiguous for t ≤ 0.

In the one-meson-one-baryon function both the infrared-regular and -singular part are nonvanishing. The infrared-
singular part can be expressed in terms of elementary functions. For arbitrary p2 the result reads

IMB(p2, M2
X) :=

1

i

∫

IR

ddk

(2π)d

1

(k2 − M2
X)((k − p)2 − m2

0)

=
m2

0 − M2
X − p2

p2

(

λX − 1

32π2

)

−
√

−λ(p2, m2
0, M

2
X)

16π2p2
arccos

(

m2
0 − M2

X − p2

2MX

√

p2

)

, (A4)
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where in our calculation IMB features with the arguments p2 = {s, u, m2
0}. λY is defined as

λY := λ +
1

16π2
log
(MY

µ

)

. (A5)

c. Three-point functions

The three-point function with two mesons involved can be traced back to the one-meson-one-baryon function, since
the combination of two mesons due to Feynman parameter integration corresponds to a new structure similar to a
meson propagator,

IMMB(t, M2
X , M2

Y ) :=
1

i

∫

IR

ddk

(2π)d

1

(M2
X − k2)(M2

Y − (k − ∆)2)(m2
0 − (pi − k)2)

=
1

i

∫ 1

0

dz

∫

IR

ddk

(2π)d

1

[k2 −M(z)2]2(m2
0 − (pi − k − z∆)2)

=

∫ 1

0

dz
(

− ∂

∂M(z)2

)

IMB

(

(pi − z∆)2,M(z)2
)

, (A6)

with M2(z) = zM2
Y + (1− z)M2

X − z(1− z)∆2. A closer look at the Passarino–Veltman (PaVe) reduction of the only
topology to which such integrals contribute, diagram (l) in Fig. 3, shows that the corresponding denominators are
nonvanishing at threshold, thus we require only the zeroth order of the integral expansion around the threshold. For
equal meson masses and t = 0, M = MX and we can easily evaluate (A6). The result reads

IMMB(0, M2
X , M2

X) :=
1

m2
0

(

λX +
1

32π2

)

+
2m2

0 − M2
X

16π2m2
0MX

√

4m2
0 − M2

X

arccos

(

− MX

2m0

)

. (A7)

In the case of different meson masses we can rewrite the derivative according to the chain rule

IMMB(0, M2
X , M2

Y ) =
1

M2
X − M2

Y

∫ 1

0

dz
( ∂

∂z

)

IMB

(

p2
i ,M(z)2

)

=
IMB(p2

i , M
2
Y ) − IMB(p2

i , M
2
X)

M2
X − M2

Y

, (A8)

which is of course the representation of the derivative in (A6) in the limit MX → MY .
The three-point function with two baryon propagators reads

IMBB(P 2
1 , P 2

2 , M2
X) :=

1

i

∫

IR

ddk

(2π)d

1

(M2
X − k2)(m2

0 − (k − P1)2)(m2
0 − (k − P2)2)

. (A9)

It is easy to see from the graphs in Fig. 3 that at least one of the momenta P1/2 is always on its mass shell, so without

loss of generality we choose P 2
1 = m2

0. Furthermore, there are two possible momentum configurations to consider:
P 2

2 = {m2
0, s} (the crossed channel P 2

2 = u will be discussed below), together with q2 := (P2 − P1)
2 = {t, M2}, where

M is the mass of one of the external mesons. q2 is a quantity of second chiral order in both cases.
Applying the method of infrared regularization, the above integral reads

IMBB =
Γ(3 − d/2)

(4π)d/2md−4

∫ ∞

0

dx

∫ ∞

0

dy
[

x2m2
0 + y2P 2

2 + xy(P 2
2 + m2

0 − q2) + y(m2
0 − M2

X − P 2
2 ) + M2

X − xM2
X

]d/2−3

=
Γ(3 − d/2)

(4π)d/2

Md−4
X

md−5
0

√

P 2
2

∫ ∞

0

dx̃

∫ ∞

0

dỹ
[

(x̃ + ỹ)2 − x̃ỹ
ǫ

m0

√

P 2
2

+ ỹ
m2

0 − M2
X − P 2

2
√

P 2
2 MX

+ 1 − x̃
MX

m0

]d/2−3

,

(A10)

where we have substituted

y = ỹ
MX
√

P 2
2

, x = x̃
MX

m0
, ǫ := q2 −

(
√

P 2
2 − m0

)2

. (A11)

The variable ǫ is chosen in such a way that it is small around and vanishing at threshold, becoming our small expansion
parameter. Because the PaVe reduction procedure yields denominators linear in ǫ, we evaluate the integrals up to
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and including first order in ǫ. After a transformation of the variables as x̃ := u/2 and ỹ := (2u − v)/2 we obtain

IMBB =
Γ(3 − d/2)

2(4π)d/2

Md−4
X

md−5
0

√

P 2
2

∫ ∞

0

du

∫ 2u

0

dv
[

u2 + 1 − u
P 2

2 + M2
X − m2

0
√

P 2
2 MX

+ v
P 2

2 − m2
0 + M2

X(1 −
√

P 2
2 /m0)

2
√

P 2
2 M2

X

− ǫ
2uv − v2

4m0

√

P 2
2

]d/2−3

=
Γ(3 − d/2)

2(4π)d/2

Md−4
X

md−5
0

√

P 2
2

∫ ∞

0

du

∫ 2u

0

dv

{

[

u2 + 1 − u
P 2

2 + M2
X − m2

0
√

P 2
2 MX

+ Kv
]d/2−3

(A12)

+ ǫ
d − 6

2

v2 − 2uv

4m0

√

P 2
2

[

u2 + 1 − u
P 2

2 + M2
X − m2

0
√

P 2
2 MX

+ Kv
]d/2−4

}

+ O(ǫ2) ,

where in the last step we have expanded the integrand to first order in ǫ and defined

K :=
P 2

2 − m2
0 + M2

X(1 −
√

P 2
2 /m0)

2
√

P 2
2 MX

. (A13)

Integrating over v one obtains the following combination of one-parameter integrals

IMBB =
Γ(3 − d/2)

2(4π)d/2

Md−4
X

md−5
0

√

P 2
2

{

K−1 2

d − 4
(D2,0 −A2,0)

+ ǫ
d − 6

8m0

√

P 2
2

4(D1,0 −A1,0) − 2(d − 2)K(A2,1 + D2,1)

(d3 − 12d2 + 44d − 48)K3

}

+ O(ǫ2) , (A14)

where we denote the one-parameter integrals as follows

AZ,y :=

∫ ∞

0

uy[(u − c0)
2 + C0]

d/2−Zdu with C0 = 1 − c2
0 , c0 =

P 2
2 + M2

X − m2
0

2MX

√

P 2
2

,

DZ,y :=

∫ ∞

0

uy[(u − d0)
2 + D0]

d/2−Zdu with D0 = 1 − d2
0 , d0 =

MX

m0
. (A15)

The parameter integrals of the type DZ,y do not cause problems for any of the combinations {Z, y}. The A-type
integrands on the other hand may have poles within the integration range, where they only converge for d < 4 and
thus analytic continuation must be performed. The results of this are given in Appendix A2.

For the crossed channel the steps above remain valid when substituting s → u, and for P 2
2 ∈ {m2

0, u} the expansion

parameter yields ǫ := q2 − (
√

P 2
2 + m0)

2. The final results are presented in Appendix A3.

d. Four-point function

This integral only appears in the box graph (i) of Fig. 3 and has only one momentum structure each in s- and
u-channel, {P 2

1 = P 2
3 = m2

0, P 2
2 = s} and {P 2

1 = P 2
3 = m2

0, P 2
2 = u} respectively,

IMBBB(P 2
2 , M2

X) :=
1

i

∫

IR

ddk

(2π)d

1

(M2
X − k2)(m2

0 − (k − P1)2)(m2
0 − (k − P2)2)(m2

0 − (k − P3)2)
. (A16)

The threshold expansion parameter can here be chosen to be the Mandelstam variable t, which is also a quantity
of second chiral order. When we fix the remaining Mandelstam variables to their values at the threshold, the PaVe
denominators become linear functions in t, which demands an expansion of the scalar loop integrals up to O(t).

Combining the baryon propagators with the meson propagator in the spirit of infrared regularization and performing
the loop integration we find

IMBBB :=
Γ(4 − d/2)

(4π)d/2

∫ ∞

0

dx

∫ ∞

0

dy

∫ ∞

0

dz

×
{

[

−M2
X(x + z − 1) − y(M2

X + s − m2
0) + m2

0(x + z)2 + y2s + y(x + z)(s + m2
0 − M2

Y )
]d/2−4

(A17)

− t zx
d − 8

2

[

−M2
X(x + z − 1) − y(M2

X + s − m2
0) + m2

0(x + z)2 + y2s + y(x + z)(s + m2
0 − M2

X)
]d/2−5

}

,
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where the external particles are put on-shell. We combine baryon parameters to u := x + z and v := x− z and, after
v-integration, also y + u and y − u, such that we obtain a combination of the parameter integrals of the form (A15)

IMBBB =
Γ(4 − d/2)Md−5

X

4md−2
0 (4π)d/2

√
s(d − 6)

{

4

K
D3,1 − 4(A2,0 −D2,0)

K2(d − 4)

− t

m2
0(d − 4)(d − 2)

[A1,0 −D1,0

K4
− d2 − 6d + 4

2K2
D3,2 +

d3 − 12d2 + 44d− 48

6K
D4,3 +

d − 2

K3
D2,1

]}

, (A18)

with

C0 = 1 − c2
0, c0 =

sthr + M2
X − m2

0

2MX
√

sthr
, D0 = 1 − d2

0, d0 =
MX

m0
, (A19)

where sthr = (m0 + M)2 with the appropriate meson mass M . The A-type integrals again demand analytic continu-
ation to d = 4 as presented in Appendix A2. The result of the final parameter integration is given in Appendix A3.

2. Analytic continuation of the parameter integrals

We here show the recursion formulas necessary for the analytic continuation of the integrals of type AZ,y as defined
in (A15). One finds

A3,2 := − 1

d − 4
(A2,0 + c0) + c2

0A3,0 , A3,0 :=
1√
C0

(

arctan
( c0√

C0

)

+
Γ2(1/2)

2Γ(3 − d/2)

)

,

A2,0 :=
d − 4

d − 3
(C0A3,0 +

c0

d − 4
) , A1,0 :=

d − 2

d − 1
(C0A2,0 +

c0

d − 2
) ,

A2,1 := − 1

d − 2
+ c0A2,0 , A3,1 := − 1

d − 4
+ c0A3,0 ,

A2,2 := − 1

d − 2
(A1,0 + c0) + c2

0A2,0 , A3,3 := c0A3,2 − 2

d − 4
A2,1 ,

A4,0 :=
1

2C0

(

c0 +
1√
C0

arctan
( c0√

C0

)

+
1√
C0

Γ(3/2)Γ(1/2)

Γ(6 − d)

)

,

A4,3 := − 1

d − 6

(

2A3,1 + c0A3,0 + c2
0 − (d − 6)c3

0A4,0
)

. (A20)

3. Result of the threshold expansion

Here we present the results of the expansion of the nontrivial one-loop integrals at threshold, i.e. sthr = (m0+MX)2,
uthr = (m0−MX)2, where MX corresponds to the mass of the external and MY of the internal meson. Loop integrals
with two meson propagators were already given in Appendix A1. We suppress the higher orders of the respective
expansion parameter.

a. Two-point functions

IMB(sthr, MY ) =
1

32π2(m0 + MX)2

{

(

M2
Y + 2m0MX + M2

X

)

(

1 − 32π2λY

)

+ 2
√

−(M2
Y − M2

X)(M2
Y − (2m0 + MX)2) arccos

(M2
Y + M2

X + 2m0MX

2MY m0 + 2MY MX

)

}

,

IMB(uthr, MY ) = IMB(sthr, MY )
∣

∣

MX→−MX

,

IMB(m2
0, MY ) =

1

32π2m2
0

{

M2
Y

(

1 − 32π2λY

)

− 2MY

√

4m2
0 − M2

Y arccos
(

− 2m0

MY

)

}

. (A21)
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b. Three-point functions

In the following we use ǫ := M2
X − (

√
s − m0)

2 and

P :=
√

4m2
0 − M2

Y arccos
(MY

2m0

)

,

R :=
√

−(M2
X − M2

Y )((2m0 + MX)2 − M2
Y ) arccos

(M2
X + 2m0MX + M2

Y

2MY m0 + 2MY MX

)

. (A22)

We find

IMBB(m2
0, m

2
0, M

2
Y ) =

1

32π2m2
0

{

− 32π2λY − 1 − 2MY
√

4m2
0 − M2

Y

arccos
(

− MY

2m0

)

}

,

IMBB(m2
0, sthr, M

2
Y ) =

1

32π2m0MX(m0 + MX)(m0(2m0 + MX) − M2
Y )

×
{

MX(m0(2m0 + MX) − M2
Y )(32π2λY − 1) + 2(m0 + MX)MY P − 2m0R

− ǫ

36m2
0M

2
X(m0(2m0 + MX) − M2

Y )2

×
(

96M3
Xπ2λY (2m2

0 + MXm0 − M2
Y )3

+ MX(2m2
0 + MXm0 − M2

Y )
[

4M2
Xm4

0 − 48M2
Y m4

0 + 4M3
Xm3

0 − 72MXM2
Y m3

0

+ M4
Xm2

0 + 12M4
Y m2

0 − 16M2
XM2

Y m2
0 + 12MXM4

Y m0 + 10M3
XM2

Y m0 + M2
XM4

Y

]

+ 6M3
Y (2m0 − MX)(m0 + MX)2(4m2

0 + 3MXm0 − M2
Y )P

− 6m2
0

[

m0M
4
X + 4m2

0M
3
X − 3M2

Y M3
X + 4m3

0M
2
X

+ m0M
2
Y M2

X − 3M4
Y MX + 14m2

0M
2
Y MX − 2m0M

4
Y + 8m3

0M
2
Y

]

R
)}

,

IMBB(m2
0, uthr, M

2
Y ) = IMBB(m2

0, sthr, M
2
Y )
∣

∣

MX→−MX

. (A23)

c. Four-point functions

IMBBB(sthr, M
2
Y ) =

1

16π2m0M2
X(2m2

0 + MXm0 − M2
Y )2

×
{

MX(2m2
0 + MXm0 − M2

Y ) − m0MY

(4m2
0 − M2

Y )
(4m2

0 + 2MXm0 − M2
X − M2

Y )P + m0R

+
t

72m2
0M

2
X(4m2

0 − M2
Y )2(2m2

0 + MXm0 − M2
Y )2

×
(

MX(4m2
0 − M2

Y )(m0(2m0 + MX) − M2
Y )
[

(−6m2
0 + 3MXm0 − 2M2

X)M6
Y

+ m0(48m3
0 + 6MXm2

0 + 19M2
Xm0 + 7M3

X)M4
Y − m2

0(96m4
0 + 72MXm3

0

+ 88M2
Xm2

0 + 48M3
Xm0 + 11M4

X)M2
Y + 32m4

0M
2
X(2m0 + MX)2

]

− 6m3
0(M

2
Y − M2

X)((2m0 + MX)2 − M2
Y )(M2

Y − 4m2
0)

2R

+ 6MY m3
0

(

4m2
0 + 2MXm0 − M2

X − M2
Y

)

[

M6
Y + 16m4

0M
2
Y − 6m2

0M
2
X(2m0 + MX)2

+ (16MXm3
0 + 20M2

Xm2
0 + 8M3

Xm0 + M4
X) − 4(2m2

0 + MXm0 + M2
X)M4

Y

]

P
)}

,

IC
MBBB(uthr, M

2
Y ) = IMBBB(sthr, M

2
Y )
∣

∣

MX→−MX

. (A24)
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APPENDIX B: RESULT OF THE SU(2) EXPANSION OF THE LOOP INTEGRALS

Here we present the results of the double-scale expansion of the scalar loop integrals as described in the main text.
The integrals are expanded up to the order required by the calculation in the main part. We use the abbreviations
X := s − m2

0, Y := u − m2
0.

1. Two-point functions

IMB(s, M2
Y ) =

1

32π2m2
0

{

(10m4
0 − 6M2

Y m2
0 + M4

Y )X 2

2m4
0(4m2

0 − M2
Y )

+ 32π2λY

(

− M2
Y +

(m2
0 − M2

Y )X 2

m4
0

− (m2
0 − M2

Y )X
m2

0

)

−X + M2
Y +

2 arccos
(

− MY

2m0

)

m4
0(4m2

0 − M2
Y )3/2MY

(

(2m6
0 − 12M2

Y m4
0 + 7M4

Y m2
0 − M6

Y )X 2

− m4
0M

2
Y (4m2

0 − M2
Y )2 + m2

0M
2
Y (3m2

0 − M2
Y )(4m2

0 − M2
Y )X

)}

,

IMB(u, M2
Y ) = IMB(s, MY )

∣

∣

∣

X→Y
,

IMB(m2
0, M

2
Y ) =

1

32π2m2
0

{

M2
Y (1 − 32π2λY ) − 2MY

√

4m2
0 − M2

Y arccos
(

− MY

2m0

)

}

. (B1)

2. Three-point functions

IMMB(t, M2
Y , M2

Y ) =
1

32π2m2
0

{

1 + 32π2λY +
4m2

0 − 2M2
Y

MY

√

4m2
0 − M2

Y

arccos
(

− MY

2m0

)

}

,

IMBB(m2
0, s, M

2
Y ) =

1

32π2m2
0

{

32π2λY

(

− M2
π

6m2
0

− 1 +
X

2m2
0

− 2X 2

3m4
0

)

− (2m2
0 − M2

Y )M2
π

3m2
0(4m2

0 − M2
Y )

− 1

+
(16m6

0 − 70M2
Y m4

0 + 38M4
Y m2

0 − 5M6
Y )X 2

3m4
0M

2
Y (4m2

0 − M2
Y )2

+
(3m2

0 − M2
Y )X

m2
0(4m2

0 − M2
Y )

+
arccos

(

− MY

2m0

)

3m4
0MY (4m2

0 − M2
Y )5/2

[

− 4
(

18m6
0 − 30M2

Y m4
0 + 10M4

Y m2
0 − M6

Y

)

X 2

+ 6m4
0M

2
Y (4m2

0 − M2
Y )2 + M2

Y M2
πm2

0(6m2
0 − M2

Y )(4m2
0 − M2

Y )

+ 3(4m4
0 − 6M2

Y m2
0 + M4

Y )(4m2
0 − M2

Y )X
]}

,

IMBB(m2
0, u, M2

Y ) = IMBB(MY )
∣

∣

∣

X→Y
,

IMBB(m2
0, m

2
0, M

2
Y ) =

1

96π2m2
0

{

− 96π2λY

(

1 +
t

6m2
0

)

− (2m2
0 − M2

Y )t

m2
0(4m2

0 − M2
Y )

− 3

+
arccos

(

− MY

2m0

)

m2
0(4m2

0 − M2
Y )3/2

(

MY (6m2
0 − M2

Y )t + 6MY m2
0(4m2

0 − M2
Y )2
)

}

. (B2)

3. Four-point functions

IMBBB(s, M2
Y ) =

1

32π2m2
0(4m2

0 − M2
Y )

{

1 +
4m2

0

MY

√

4m2
0 − M2

Y

arccos
(

− MY

2m0

)

}

,

IMBBB(u, M2
Y ) = IMBBB(s, M2

Y ) . (B3)
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