34 research outputs found

    Pancreatic ÎČ-cell imaging in humans: Fiction or option?

    Get PDF
    Diabetes mellitus is a growing worldwide epidemic disease, currently affecting 1 in 12 adults. Treatment of disease complications typically consumes ∌10% of healthcare budgets in developed societies. Whilst immune‐mediated destruction of insulin‐secreting pancreatic ÎČ cells is responsible for Type 1 diabetes, both the loss and dysfunction of these cells underly the more prevalent Type 2 diabetes. The establishment of robust drug development programmes aimed at ÎČ‐cell restoration is still hampered by the absence of means to measure ÎČ‐cell mass prospectively in vivo, an approach which would provide new opportunities for understanding disease mechanisms and ultimately assigning personalized treatments. In the present review, we describe the progress towards this goal achieved by the Innovative Medicines Initiative in Diabetes, a collaborative public–private consortium supported by the European Commission and by dedicated resources of pharmaceutical companies. We compare several of the available imaging methods and molecular targets and provide suggestions as to the likeliest to lead to tractable approaches. Furthermore, we discuss the simultaneous development of animal models that can be used to measure subtle changes in ÎČ‐cell mass, a prerequisite for validating the clinical potential of the different imaging tracers

    Molecular phenotyping of multiple mouse strains under metabolic challenge uncovers a role for <i>Elovl2</i> in glucose-induced insulin secretion.

    Get PDF
    In type 2 diabetes (T2D), pancreatic ÎČ cells become progressively dysfunctional, leading to a decline in insulin secretion over time. In this study, we aimed to identify key genes involved in pancreatic beta cell dysfunction by analyzing multiple mouse strains in parallel under metabolic stress. Male mice from six commonly used non-diabetic mouse strains were fed a high fat or regular chow diet for three months. Pancreatic islets were extracted and phenotypic measurements were recorded at 2 days, 10 days, 30 days, and 90 days to assess diabetes progression. RNA-Seq was performed on islet tissue at each time-point and integrated with the phenotypic data in a network-based analysis. A module of co-expressed genes was selected for further investigation as it showed the strongest correlation to insulin secretion and oral glucose tolerance phenotypes. One of the predicted network hub genes was &lt;i&gt;Elovl2&lt;/i&gt; , encoding Elongase of very long chain fatty acids 2. &lt;i&gt;Elovl2&lt;/i&gt; silencing decreased glucose-stimulated insulin secretion in mouse and human ÎČ cell lines. Our results suggest a role for &lt;i&gt;Elovl2&lt;/i&gt; in ensuring normal insulin secretory responses to glucose. Moreover, the large comprehensive dataset and integrative network-based approach provides a new resource to dissect the molecular etiology of ÎČ cell failure under metabolic stress

    Interleukin-7 Regulates Adipose Tissue Mass and Insulin Sensitivity in High-Fat Diet-Fed Mice through Lymphocyte-Dependent and Independent Mechanisms

    Get PDF
    Although interleukin (IL)-7 is mostly known as a key regulator of lymphocyte homeostasis, we recently demonstrated that it also contributes to body weight regulation through a hypothalamic control. Previous studies have shown that IL-7 is produced by the human obese white adipose tissue (WAT) yet its potential role on WAT development and function in obesity remains unknown. Here, we first show that transgenic mice overexpressing IL-7 have reduced adipose tissue mass associated with glucose and insulin resistance. Moreover, in the high-fat diet (HFD)-induced obesity model, a single administration of IL-7 to C57BL/6 mice is sufficient to prevent HFD-induced WAT mass increase and glucose intolerance. This metabolic protective effect is accompanied by a significant decreased inflammation in WAT. In lymphocyte-deficient HFD-fed SCID mice, IL-7 injection still protects from WAT mass gain. However, IL-7-triggered resistance against WAT inflammation and glucose intolerance is lost in SCID mice. These results suggest that IL-7 regulates adipose tissue mass through a lymphocyte-independent mechanism while its protective role on glucose homeostasis would be relayed by immune cells that participate to WAT inflammation. Our observations establish a key role for IL-7 in the complex mechanisms by which immune mediators modulate metabolic functions

    Exploring Functional ÎČ-Cell Heterogeneity In Vivo Using PSA-NCAM as a Specific Marker

    Get PDF
    BACKGROUND:The mass of pancreatic beta-cells varies according to increases in insulin demand. It is hypothesized that functionally heterogeneous beta-cell subpopulations take part in this process. Here we characterized two functionally distinct groups of beta-cells and investigated their physiological relevance in increased insulin demand conditions in rats. METHODS:Two rat beta-cell populations were sorted by FACS according to their PSA-NCAM surface expression, i.e. beta(high) and beta(low)-cells. Insulin release, Ca(2+) movements, ATP and cAMP contents in response to various secretagogues were analyzed. Gene expression profiles and exocytosis machinery were also investigated. In a second part, beta(high) and beta(low)-cell distribution and functionality were investigated in animal models with decreased or increased beta-cell function: the Zucker Diabetic Fatty rat and the 48 h glucose-infused rat. RESULTS:We show that beta-cells are heterogeneous for PSA-NCAM in rat pancreas. Unlike beta(low)-cells, beta(high)-cells express functional beta-cell markers and are highly responsive to various insulin secretagogues. Whereas beta(low)-cells represent the main population in diabetic pancreas, an increase in beta(high)-cells is associated with gain of function that follows sustained glucose overload. CONCLUSION:Our data show that a functional heterogeneity of beta-cells, assessed by PSA-NCAM surface expression, exists in vivo. These findings pinpoint new target populations involved in endocrine pancreas plasticity and in beta-cell defects in type 2 diabetes

    Role of glucose in IRS signaling in rat pancreatic islets: specific effects and interplay with insulin

    Get PDF
    We investigated the possible interplay between insulin and glucose signaling pathways in rat pancreatic ÎČ-cell with a special focus on the role of glucose in IRS signaling in vivo. Three groups of rats were constituted by combining simultaneous infusion during 48 h either of glucose and/or insulin, or glucose+diazoxide: Hyperglycemic- Hyperinsulinemic (HGHI), euglycemic-Hyperinsulinemic (eGHI), Hyperglycemic-euinsulinemic (HGeI). Control rats were infused with 0,9% NaCl. In HGHI and HGeI rats plasma glucose levels were maintained at 20-22 mmol/l. In eGHI rats, plasma glucose was not different from that of controls, whereas plasma insulin was much higher than in controls. In HGHI rats, IRS-2 mRNA expression, total protein and phosphorylated protein amounts were increased compared to controls. In HGeI rats, only IRS-2 mRNA expression was increased. No change was observed in eGHI rats whatever the parameter considered. In all groups, mRNA concentration of IRS-1 was similar to that of controls. The quantity of total and phosphorylated IRS- 1 protein was dramatically increased in HGHI rats and to a lesser extent in eGHI rats. Neither mRNA nor IRS-1 protein expression were modified in HGeI rats. The data suggest that glucose and insulin play at once a specific and a complementary role in islet IRSs signaling. Especially, glucose stimulates IRS-2 mRNA expression whatever the insulin status and independently of the secretory process. The differential regulation of IRS-1 and IRS-2 expressions is in agreement with their supposed different involvement in the control of ÎČ-cell growth and function
    corecore