4,450 research outputs found
Large scale structure in the HI Parkes All-Sky Survey: Filling the Voids with HI galaxies?
We estimate the two-point correlation function in redshift space of the
recently compiled HIPASS neutral hydrogen (HI) sources catalogue, which if
modeled as a power law, , the best-fitting
parameters for the HI selected galaxies are found to be Mpc with . Fixing the slope to its universal
value , we obtain Mpc. Comparing the
measured two point correlation function with the predictions of the concordance
cosmological model, we find that at the present epoch the HI selected galaxies
are anti-biased with respect to the underlying matter fluctuation field with
their bias value being . Furthermore, dividing the HI
galaxies into two richness subsamples we find that the low mass HI galaxies
have a very low present bias factor (), while the high mass
HI galaxies trace the underlying matter distribution as the optical galaxies
(). Using our derived present-day HI galaxy bias we estimate
their redshift space distortion parameter, and correct accordingly the
correlation function for peculiar motions. The resulting real-space correlation
length is Mpc and Mpc for the low and high mass HI galaxies, respectively. The
low-mass HI galaxies appear to have the lowest correlation length among all
extragalactic populations studied to-date. Also, we have correlated the
IRAS-PSCz reconstructed density field, smoothed over scales of 5 Mpc,
with the positions of the HI galaxies, to find that indeed the HI galaxies are
typically found in negative overdensity regions (\delta\rho/\rho_{\rm PSCz}
\mincir 0).Comment: 9 pages, 8 figures, MNRAS in pres
Neck atonia with a focal stimulation-induced seizure arising from the SMA: pathophysiological considerations.
A 28-year-old patient with pharmacoresistant non-lesional right frontal epilepsy underwent extra-operative intracranial EEG recordings and electrical cortical stimulation (ECS) to map eloquent cortex. Right supplementary motor area (SMA) ECS induced a brief seizure with habitual symptoms involving neck tingling followed by asymmetric tonic posturing. An additional feature was neck atonia. During atonia and sensory aura, discharges were seen in the mesial frontal electrodes and precentral gyrus. Besides motor signs, atonia, although rare and not described in the neck muscles, and sensations have been reported with SMA stimulation. The mechanisms underlying neck atonia in seizures arising from the SMA can be explained by supplementary negative motor area (SNMA) - though this was not mapped in electrodes overlying the ictal onset zone in our patient - or primary sensorimotor cortex activation through rapid propagation. Given the broad spectrum of signs elicited by SMA stimulation and rapid spread of seizures arising from the SMA, caution should be taken to not diagnose these as non-epileptic, as had previously occurred in this patient
A massive, distant proto-cluster at z=2.47 caught in a phase of rapid formation?
Numerical simulations of cosmological structure formation show that the
Universe's most massive clusters, and the galaxies living in those clusters,
assemble rapidly at early times (2.5 < z < 4). While more than twenty
proto-clusters have been observed at z > 2 based on associations of 5-40
galaxies around rare sources, the observational evidence for rapid cluster
formation is weak. Here we report observations of an asymmetric, filamentary
structure at z = 2.47 containing seven starbursting, submillimeter-luminous
galaxies and five additional AGN within a comoving volume of 15000 Mpc.
As the expected lifetime of both the luminous AGN and starburst phase of a
galaxy is ~100 Myr, we conclude that these sources were likely triggered in
rapid succession by environmental factors, or, alternatively, the duration of
these cosmologically rare phenomena is much longer than prior direct
measurements suggest. The stellar mass already built up in the structure is
and we estimate that the cluster mass will exceed that
of the Coma supercluster at . The filamentary structure is in line
with hierarchical growth simulations which predict that the peak of cluster
activity occurs rapidly at z > 2.Comment: 7 pages, 3 figures, 2 tables, accepted in ApJL (small revisions from
previous version
Cosmological Parameter Extraction from the First Season of Observations with DASI
The Degree Angular Scale Interferometer (\dasi) has measured the power
spectrum of the Cosmic Microwave Background anisotropy over the range of
spherical harmonic multipoles 100<l<900. We compare this data, in combination
with the COBE-DMR results, to a seven dimensional grid of adiabatic CDM models.
Adopting the priors h>0.45 and 0.0<=tau_c<=0.4, we find that the total density
of the Universe Omega_tot=1.04+/-0.06, and the spectral index of the initial
scalar fluctuations n_s=1.01+0.08-0.06, in accordance with the predictions of
inflationary theory. In addition we find that the physical density of baryons
Omega_b.h^2=0.022+0.004-0.003, and the physical density of cold dark matter
Omega_cdm.h^2=0.14+/-0.04. This value of Omega_b.h^2 is consistent with that
derived from measurements of the primordial abundance ratios of the light
elements combined with big bang nucleosynthesis theory. Using the result of the
HST Key Project h=0.72+/-0.08 we find that Omega_t=1.00+/-0.04, the matter
density Omega_m=0.40+/-0.15, and the vacuum energy density
Omega_lambda=0.60+/-0.15. (All 68% confidence limits.)Comment: 7 pages, 4 figures, minor changes in response to referee comment
DASI Three-Year Cosmic Microwave Background Polarization Results
We present the analysis of the complete 3-year data set obtained with the
Degree Angular Scale Interferometer (DASI) polarization experiment, operating
from the Amundsen-Scott South Pole research station. Additional data obtained
at the end of the 2002 Austral winter and throughout the 2003 season were added
to the data from which the first detection of polarization of the cosmic
microwave background radiation was reported. The analysis of the combined data
supports, with increased statistical power, all of the conclusions drawn from
the initial data set. In particular, the detection of E-mode polarization is
increased to 6.3 sigma confidence level, TE cross-polarization is detected at
2.9 sigma, and B-mode polarization is consistent with zero, with an upper limit
well below the level of the detected E-mode polarization. The results are in
excellent agreement with the predictions of the cosmological model that has
emerged from CMB temperature measurements. The analysis also demonstrates that
contamination of the data by known sources of foreground emission is
insignificant.Comment: 13 pages Latex, 10 figures, submitted to Ap
An aerial parallel manipulator with shared compliance
Accessing and interacting with difficult to reach surfaces at various orientations is of interest within a variety of industrial contexts. Thus far, the predominant robotic solution to such a problem has been to leverage the maneuverability of a fully actuated, omnidirectional aerial manipulator. Such an approach, however, requires a specialised system with a high relative degree of complexity, thus reducing platform endurance and real-world applicability. The work here presents a new aerial system composed of a parallel manipulator and conventional, underactuated multirotor flying base to demonstrate interaction with vertical and non-vertical surfaces. Our solution enables compliance to external disturbance on both subsystems, the manipulator and flying base, independently with a goal of improved overall system performance when interacting with surfaces. To achieve this behaviour, an admittance control strategy is implemented on various layers of the flying base's dynamics together with torque limits imposed on the manipulator actuators. Experimental evaluations show that the proposed system is compliant to external perturbations while allowing for differing interaction behaviours as compliance parameters of each subsystem are altered. Such capabilities enable an adjustable form of dexterity in completing sensor installation, inspection and aerial physical interaction tasks. A video of our system interacting with various surfaces can be found here: https://youtu.be/38neGb8-lXg
Evaluating immersive teleoperation interfaces: coordinating robot radiation monitoring tasks in nuclear facilities
We present a virtual reality (VR) teleoperation interface for a ground-based robot, featuring dense 3D environment reconstruction and a low latency video stream, with which operators can immersively explore remote environments. At the UK Atomic Energy Authority's (UKAEA) Remote Applications in Challenging Environments (RACE) facility, we applied the interface in a user study where trained robotics operators completed simulated nuclear monitoring and decommissioning style tasks to compare VR and traditional teleoperation interface designs. We found that operators in the VR condition took longer to complete the experiment, had reduced collisions, and rated the generated 3D map with higher importance when compared to non-VR operators. Additional physiological data suggested that VR operators had a lower objective cognitive workload during the experiment but also experienced increased physical demand. Overall the presented results show that VR interfaces may benefit work patterns in teleoperation tasks within the nuclear industry, but further work is needed to investigate how such interfaces can be integrated into real world decommissioning workflows
POKER: Estimating the power spectrum of diffuse emission with complex masks and at high angular resolution
We describe the implementation of an angular power spectrum estimator in the
flat sky approximation. POKER (P. Of k EstimatoR) is based on the MASTER
algorithm developped by Hivon and collaborators in the context of CMB
anisotropy. It works entirely in discrete space and can be applied to arbitrary
high angular resolution maps. It is therefore particularly suitable for current
and future infrared to sub-mm observations of diffuse emission, whether
Galactic or cosmological.Comment: Astronomy and Astrophysics, in pres
PAPPA: Primordial Anisotropy Polarization Pathfinder Array
The Primordial Anisotropy Polarization Pathfinder Array (PAPPA) is a
balloon-based instrument to measure the polarization of the cosmic microwave
background and search for the signal from gravity waves excited during an
inflationary epoch in the early universe. PAPPA will survey a 20 x 20 deg patch
at the North Celestial Pole using 32 pixels in 3 passbands centered at 89, 212,
and 302 GHz. Each pixel uses MEMS switches in a superconducting microstrip
transmission line to combine the phase modulation techniques used in radio
astronomy with the sensitivity of transition-edge superconducting bolometers.
Each switched circuit modulates the incident polarization on a single detector,
allowing nearly instantaneous characterization of the Stokes I, Q, and U
parameters. We describe the instrument design and status.Comment: 12 pages, 9 figures. Proceedings of the Fundamental Physics With CMB
workshop, UC Irvine, March 23-25, 2006, to be published in New Astronomy
Review
- âŠ