106 research outputs found

    Mechanical control of the directional stepping dynamics of the kinesin motor

    Full text link
    Among the multiple steps constituting the kinesin's mechanochemical cycle, one of the most interesting events is observed when kinesins move an 8-nm step from one microtubule (MT)-binding site to another. The stepping motion that occurs within a relatively short time scale (~100 microsec) is, however, beyond the resolution of current experiments, therefore a basic understanding to the real-time dynamics within the 8-nm step is still lacking. For instance, the rate of power stroke (or conformational change), that leads to the undocked-to-docked transition of neck-linker, is not known, and the existence of a substep during the 8-nm step still remains a controversial issue in the kinesin community. By using explicit structures of the kinesin dimer and the MT consisting of 13 protofilaments (PFs), we study the stepping dynamics with varying rates of power stroke (kp). We estimate that 1/kp <~ 20 microsec to avoid a substep in an averaged time trace. For a slow power stroke with 1/kp>20 microsec, the averaged time trace shows a substep that implies the existence of a transient intermediate, which is reminiscent of a recent single molecule experiment at high resolution. We identify the intermediate as a conformation in which the tethered head is trapped in the sideway binding site of the neighboring PF. We also find a partial unfolding (cracking) of the binding motifs occurring at the transition state ensemble along the pathways prior to binding between the kinesin and MT.Comment: 26 pages, 10 figure

    Novel thoracoscopic approach to posterior mediastinal goiters: report of two cases

    Get PDF
    Trans-cervical resection of posterior mediastinal goiters is usually very difficult, requiring a high thoracotomy. Until recently, using conventional video-assisted thoracoscopic surgery to resect such tumors has been technically difficult and unsafe. By virtue of 3 dimensional visualization, greater dexterity, and more accurate dissection, the Da Vinci robot, for the first time, enables a completely minimally invasive approach to the posterior superior mediastinum

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    Processive Movement by a Kinesin Heterodimer with an Inactivating Mutation in One Head†

    Get PDF
    ABSTRACT: A single molecule of the motor enzyme kinesin-1 keeps a tight grip on its microtubule track, making tens or hundreds of discrete, unidirectional 8 nm steps before dissociating. This high duty ratio processive movement is thought to require a mechanism in which alternating stepping of the two head domains of the kinesin dimer is driven by alternating, overlapped cycles of ATP hydrolysis by the two heads. The R210K point mutation in Drosophila kinesin heavy chain was reported to disrupt the ability of the enzyme active site to catalyze ATP P-O bond cleavage. We expressed R210K homodimers as well as isolated R210K heads and confirmed that both are essentially inactive. We then coexpressed tagged R210K subunits with untagged wild-type subunits and affinity purified R210K/wild-type heterodimers together with the inactive R210K homodimers. In contrast to the R210K head or homodimer, the heterodimer was a highly active (&gt;50 % of wild-type) microtubule-stimulated ATPase, and the heterodimer displayed high duty ratio processive movement in single-molecule motility experiments. Thus, dimerization of a subunit containing the inactivating mutation with a functional subunit can complement the mutation; this must occur either by lowering or by bypassing kinetic barriers in the ATPase or mechanical cycles of the mutant head. The observations provide support for kinesin-1 gating mechanisms in which one head stimulates the rate of essential processes in the other

    Cationic polyelectrolytes: A new look at their possible roles as opsonins, as stimulators of respiratory burst in leukocytes, in bacteriolysis, and as modulators of immune-complex diseases (A review hypothesis)

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44497/1/10753_2004_Article_BF00915991.pd

    Auditory event-related potentials

    Get PDF
    Auditory event related potentials are electric potentials (AERP, AEP) and magnetic fields (AEF) generated by the synchronous activity of large neural populations in the brain, which are time-locked to some actual or expected sound event
    corecore