77 research outputs found

    Monoamine oxidase-dependent endoplasmic reticulum-mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes.

    Get PDF
    Monoamine oxidase (MAO) inhibitors ameliorate contractile function in diabetic animals, but the mechanisms remain unknown. Equally elusive is the interplay between the cardiomyocyte alterations induced by hyperglycemia and the accompanying inflammation. Here we show that exposure of primary cardiomyocytes to high glucose and pro-inflammatory stimuli leads to MAO-dependent increase in reactive oxygen species that causes permeability transition pore opening and mitochondrial dysfunction. These events occur upstream of endoplasmic reticulum (ER) stress and are abolished by the MAO inhibitor pargyline, highlighting the role of these flavoenzymes in the ER/mitochondria cross-talk. In vivo, streptozotocin administration to mice induced oxidative changes and ER stress in the heart, events that were abolished by pargyline. Moreover, MAO inhibition prevented both mast cell degranulation and altered collagen deposition, thereby normalizing diastolic function. Taken together, these results elucidate the mechanisms underlying MAO-induced damage in diabetic cardiomyopathy and provide novel evidence for the role of MAOs in inflammation and inter-organelle communication. MAO inhibitors may be considered as a therapeutic option for diabetic complications as well as for other disorders in which mast cell degranulation is a dominant phenomenon

    Why Does Exercise “Triggerâ€? Adaptive Protective Responses in the Heart?

    Get PDF
    Numerous epidemiological studies suggest that individuals who exercise have decreased cardiac morbidity and mortality. Pre-clinical studies in animal models also find clear cardioprotective phenotypes in animals that exercise, specifically characterized by lower myocardial infarction and arrhythmia. Despite the clear benefits, the underlying cellular and molecular mechanisms that are responsible for exercise preconditioning are not fully understood. In particular, the adaptive signaling events that occur during exercise to “trigger� cardioprotection represent emerging paradigms. In this review, we discuss recent studies that have identified several different factors that appear to initiate exercise preconditioning. We summarize the evidence for and against specific cellular factors in triggering exercise adaptations and identify areas for future study

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Unexpected effects of azole transporter inhibitors on antifungal susceptibility in Candida glabrata and other pathogenic Candida species

    Get PDF
    The pathogenic fungus Candida glabrata is often resistant to azole antifungal agents. Drug efflux through azole transporters, such as Cdr1 and Cdr2, is a key mechanism of azole resistance and these genes are under the control of the transcription factor Pdr1. Recently, the monoamine oxidase A (MAO-A) inhibitor clorgyline was shown to inhibit the azole efflux pumps, leading to increased azole susceptibility in C. glabrata. In the present study, we have evaluated the effects of clorgyline on susceptibility of C. glabrata to not only azoles, but also to micafungin and amphotericin B, using wild-type and several mutant strains. The addition of clorgyline to the culture media increased fluconazole susceptibility of a C. glabrata wild-type strain, whereas micafungin and amphotericin B susceptibilities were markedly decreased. These phenomena were also observed in other medically important Candida species, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida krusei. Expression levels of CDR1, CDR2 and PDR1 mRNAs and an amount of Cdr1 protein in the C. glabrata wild-type strain were highly increased in response to the treatment with clorgyline. However, loss of Cdr1, Cdr2, Pdr1, and a putative clorgyline target (Fms1), which is an ortholog of human MAO-A, or overexpression of CDR1 did not affect the decreased susceptibility to micafungin and amphotericin B in the presence of clorgyline. The presence of other azole efflux pump inhibitors including milbemycin A4 oxime and carbonyl cyanide 3-chlorophenylhydrazone also decreased micafungin susceptibility in C. glabrata wild-type, Δcdr1, Δcdr2, and Δpdr1 strains. These findings suggest that azole efflux pump inhibitors increase azole susceptibility but concurrently induce decreased susceptibility to other classes of antifungals independent of azole transporter functions

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment

    MCUB Hearts Mitochondria in Sickness, Less in Health

    No full text

    The dual function of reactive oxygen/nitrogen species in bioenergetics and cell death: The role of ATP synthase

    No full text
    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) targeting mitochondria are major causative factors in disease pathogenesis. The mitochondrial permeability transition pore (PTP) is a mega-channel modulated by calcium and ROS/RNS modifications and it has been described to play a crucial role in many pathophysiological events since prolonged channel opening causes cell death. The recent identification that dimers of ATP synthase form the PTP and the fact that posttranslational modifications caused by ROS/RNS also affect cellular bioenergetics through the modulation of ATP synthase catalysis reveal a dual function of these modifications in the cells. Here, we describe mitochondria as a major site of production and as a target of ROS/RNS and discuss the pathophysiological conditions in which oxidative and nitrosative modifications modulate the catalytic and pore-forming activities of ATP synthase

    The energetic cost of NNT-dependent ROS removal

    No full text
    Under conditions of high nutrient availability and low ATP synthesis, mitochondria generate reactive oxygen species (ROS) that must be removed to avoid cell injury. Among the enzymes involved in this scavenging process, peroxidases play a crucial role, using NADPH provided mostly by nicotinamide nucleotide transhydrogenase (NNT). However, scarce information is available on how and to what extent ROS formation is linked to mitochondrial oxygen consumption. A new study by Smith et al. shows that NNT activity maintains low ROS levels by means of a fine modulation of mitochondrial oxygen utilization

    \u3b22-receptors, NADPH oxidase, ROS and p38 MAPK: Another \u201cradical\u201d road to heart failure?

    No full text
    Persistent activation of the cardiac \u3b2-adrenergic system may contribute to the pathogenesis of congestive heart failure. Both \u3b2\u2081- and \u3b2\u2082-adrenoceptors are known to mediate these noxious effects, yet the \u3b2\u2081-adrenoceptor-PKA axis has received greater attention with less information available on \u3b2\u2082-adrenoceptor driven pathways. In the present issue, Xu and colleagues provide new evidence, showing that \u3b2\u2082-adrenoceptor over-expression leads to increased reactive oxygen species (ROS) emission, mainly caused by up-regulation of reduced nicotinamide adenine dinucleotide phosphate oxidase (Nox) 2 and 4. Increase in ROS levels is accompanied by p38 mitogen-activated protein kinase activation, fibrosis, apoptosis and cardiac dysfunction. Both Nox inhibition and administration of the antioxidant N-acetyl cysteine prevent these adverse effects. Interestingly, antioxidant treatment also prevents the increase in Nox expression, suggesting that \u3b2\u2082-adrenoceptor stimulation triggers a vicious cycle eventually amplified by both Nox isoforms. The possible existence of a circuitry to enhance ROS signalling and detrimental consequences on myocardial remodelling are also discussed, in light of the recent description of intracellular localization of Nox4
    corecore