1,500 research outputs found

    Quantum computing with spatially delocalized qubits

    Get PDF
    We analyze the operation of quantum gates for neutral atoms with qubits that are delocalized in space, i.e., the computational basis states are defined by the presence of a neutral atom in the ground state of one out of two trapping potentials. The implementation of single qubit gates as well as a controlled phase gate between two qubits is discussed and explicit calculations are presented for rubidium atoms in optical microtraps. Furthermore, we show how multi-qubit highly entangled states can be created in this scheme.Comment: 4 pages, 4 figure

    Quantum Logic Gates in Optical Lattices

    Full text link
    We propose a new system for implementing quantum logic gates: neutral atoms trapped in a very far-off-resonance optical lattice. Pairs of atoms are made to occupy the same well by varying the polarization of the trapping lasers, and then a near-resonant electric dipole is induced by an auxiliary laser. A controlled-NOT can be implemented by conditioning the target atomic resonance on a resolvable level shift induced by the control atom. Atoms interact only during logical operations, thereby suppressing decoherence.Comment: Revised version, To appear in Phys. Rev. Lett. Three separate postscript figure

    Development of a yeast model to study the contribution of vacuolar polyphosphate metabolism to lysine polyphosphorylation

    Get PDF
    A recently discovered protein post-translational modification, lysine polyphosphorylation (K-PPn), consists of the covalent attachment of inorganic polyphosphate (polyP) to lysine residues. The non-enzymatic nature of K-PPn means that the degree of this modification depends on both polyP abundance and the amino acids surrounding the modified lysine. K-PPn was originally discovered in budding yeast (Saccharomyces cerevisiae), in which polyP anabolism and catabolism are well characterized. However, yeast vacuoles accumulate large amounts of polyP, and upon cell lysis, the release of the vacuolar polyP could non-physiologically cause K-PPn of nuclear and cytosolic targets. Moreover, yeast vacuoles possess two very active endopolyphosphatases, Ppn1 and Ppn2, that could have opposing effects on the extent of K-PPn. Here, we characterized the contribution of vacuolar polyP metabolism to K-PPn of two yeast proteins, Top1 (DNA topoisomerase 1) and Nsr1 (nuclear signal recognition 1). We discovered that whereas Top1-targeting K-PPn is only marginally affected by vacuolar polyP metabolism, Nsr1-targeting K-PPn is highly sensitive to the release of polyP and of endopolyphosphatases from the vacuole. Therefore, to better study K-PPn of cytosolic and nuclear targets, we constructed a yeast strain devoid of vacuolar polyP by targeting the exopolyphosphatase Ppx1 to the vacuole and concomitantly depleting the two endopolyphosphatases (ppn1Δppn2Δ, vt-Ppx1). This strain enabled us to study K-PPn of cytosolic and nuclear targets without the interfering effects of cell lysis on vacuole polyP and of endopolyphosphatases. Furthermore, we also define the fundamental nature of the acidic amino acid residues to the K-PPn target domain

    What asteroseismology can do for exoplanets

    Full text link
    We describe three useful applications of asteroseismology in the context of exoplanet science: (1) the detailed characterisation of exoplanet host stars; (2) the measurement of stellar inclinations; and (3) the determination of orbital eccentricity from transit duration making use of asteroseismic stellar densities. We do so using the example system Kepler-410 (Van Eylen et al. 2014). This is one of the brightest (V = 9.4) Kepler exoplanet host stars, containing a small (2.8 Rearth) transiting planet in a long orbit (17.8 days), and one or more additional non-transiting planets as indicated by transit timing variations. The validation of Kepler-410 (KOI-42) was complicated due to the presence of a companion star, and the planetary nature of the system was confirmed after analyzing a Spitzer transit observation as well as ground-based follow-up observations.Comment: 4 pages, Proceedings of the CoRoT Symposium 3 / Kepler KASC-7 joint meeting, Toulouse, 7-11 July 2014. To be published by EPJ Web of Conference

    Coherent manipulation of atomic qubits in optical micropotentials

    Get PDF
    We experimentally demonstrate the coherent manipulation of atomic states in far-detuned dipole traps and registers of dipole traps based on two-dimensional arrays of microlenses. By applying Rabi, Ramsey, and spin-echo techniques, we systematically investigate the dephasing mechanisms and determine the coherence time. Simultaneous Ramsey measurements in up to 16 dipole traps are performed and proves the scalability of our approach. This represents an important step in the application of scalable registers of atomic qubits for quantum information processing. In addition, this system can serve as the basis for novel atomic clocks making use of the parallel operation of a large number of individual clocks each remaining separately addressable.Comment: to be published in Appl. Phys.

    Detection of solar-like oscillations in relics of the Milky Way: asteroseismology of K giants in M4 using data from the NASA K2 mission

    Get PDF
    Asteroseismic constraints on K giants make it possible to infer radii, masses and ages of tens of thousands of field stars. Tests against independent estimates of these properties are however scarce, especially in the metal-poor regime. Here, we report the detection of solar-like oscillations in 8 stars belonging to the red-giant branch and red-horizontal branch of the globular cluster M4. The detections were made in photometric observations from the K2 Mission during its Campaign 2. Making use of independent constraints on the distance, we estimate masses of the 8 stars by utilising different combinations of seismic and non-seismic inputs. When introducing a correction to the Delta nu scaling relation as suggested by stellar models, for RGB stars we find excellent agreement with the expected masses from isochrone fitting, and with a distance modulus derived using independent methods. The offset with respect to independent masses is lower, or comparable with, the uncertainties on the average RGB mass (4-10%, depending on the combination of constraints used). Our results lend confidence to asteroseismic masses in the metal poor regime. We note that a larger sample will be needed to allow more stringent tests to be made of systematic uncertainties in all the observables (both seismic and non-seismic), and to explore the properties of RHB stars, and of different populations in the cluster.Comment: 6 pages, 3 figures, accepted for publication in MNRA

    Insulin and GH Signaling in Human Skeletal Muscle In Vivo following Exogenous GH Exposure: Impact of an Oral Glucose Load

    Get PDF
    GH induces acute insulin resistance in skeletal muscle in vivo, which in rodent models has been attributed to crosstalk between GH and insulin signaling pathways. Our objective was to characterize time course changes in signaling pathways for GH and insulin in human skeletal muscle in vivo following GH exposure in the presence and absence of an oral glucose load.Eight young men were studied in a single-blinded randomized crossover design on 3 occasions: 1) after an intravenous GH bolus 2) after an intravenous GH bolus plus an oral glucose load (OGTT), and 3) after intravenous saline plus OGTT. Muscle biopsies were taken at t = 0, 30, 60, and 120. Blood was sampled at frequent intervals for assessment of GH, insulin, glucose, and free fatty acids (FFA).GH increased AUC(glucose) after an OGTT (p<0.05) without significant changes in serum insulin levels. GH induced phosphorylation of STAT5 independently of the OGTT. Conversely, the OGTT induced acute phosphorylation of the insulin signaling proteins Akt (ser(473) and thr(308)), and AS160.The combination of OGTT and GH suppressed Akt activation, whereas the downstream expression of AS160 was amplified by GH. WE CONCLUDED THE FOLLOWING: 1) A physiological GH bolus activates STAT5 signaling pathways in skeletal muscle irrespective of ambient glucose and insulin levels 2) Insulin resistance induced by GH occurs without a distinct suppression of insulin signaling proteins 3) The accentuation of the glucose-stimulated activation of AS 160 by GH does however indicate a potential crosstalk between insulin and GH.ClinicalTrials.gov NCT00477997

    Dynamical constants for electromagnetic fields with elliptic-cylindrical symmetry

    Full text link
    Taking into account the characteristics of a free scalar field in elliptic coordinates, a new dynamical variable is found for the free electromagnetic field. The conservation law associated to this variable cannot be obtained by direct application of standard Noether theorem since the symmetry generator is of second order. Consequences on the expected mechanical behavior of an atomic system interacting with electromagnetic waves exhibiting such a symmetry are also discussed.Comment: 17 pages, 5 figures, revised version, animated graphs provided at http://www.fisica.unam.mx/research/movie
    • …
    corecore