466 research outputs found

    Making a Universe

    Get PDF
    For understanding the origin of anisotropies in the cosmic microwave background, rules to construct a quantized universe is proposed based on the dynamical triangulation method of the simplicial quantum gravity. A dd-dimensional universe having the topology Dd D^d is created numerically in terms of a simplicial manifold with dd-simplices as the building blocks. The space coordinates of a universe are identified on the boundary surface Sd1 S^{d-1} , and the time coordinate is defined along the direction perpendicular to Sd1 S^{d-1} . Numerical simulations are made mainly for 2-dimensional universes, and analyzed to examine appropriateness of the construction rules by comparing to analytic results of the matrix model and the Liouville theory. Furthermore, a simulation in 4-dimension is made, and the result suggests an ability to analyze the observations on anisotropies by comparing to the scalar curvature correlation of a S2 S^2 -surface formed as the last scattering surface in the S3 S^3 universe.Comment: 27pages,18figures,using jpsj.st

    Prediction of RNA secondary structure by maximizing pseudo-expected accuracy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have revealed the importance of considering the entire distribution of possible secondary structures in RNA secondary structure predictions; therefore, a new type of estimator is proposed including the maximum expected accuracy (MEA) estimator. The MEA-based estimators have been designed to maximize the expected accuracy of the base-pairs and have achieved the highest level of accuracy. Those methods, however, do not give the single best prediction of the structure, but employ parameters to control the trade-off between the sensitivity and the positive predictive value (PPV). It is unclear what parameter value we should use, and even the well-trained default parameter value does not, in general, give the best result in popular accuracy measures to each RNA sequence.</p> <p>Results</p> <p>Instead of using the expected values of the popular accuracy measures for RNA secondary structure prediction, which is difficult to be calculated, the <it>pseudo</it>-expected accuracy, which can easily be computed from base-pairing probabilities, is introduced. It is shown that the pseudo-expected accuracy is a good approximation in terms of sensitivity, PPV, MCC, or F-score. The pseudo-expected accuracy can be approximately maximized for each RNA sequence by stochastic sampling. It is also shown that well-balanced secondary structures between sensitivity and PPV can be predicted with a small computational overhead by combining the pseudo-expected accuracy of MCC or F-score with the γ-centroid estimator.</p> <p>Conclusions</p> <p>This study gives not only a method for predicting the secondary structure that balances between sensitivity and PPV, but also a general method for approximately maximizing the (pseudo-)expected accuracy with respect to various evaluation measures including MCC and F-score.</p

    1D Frustrated Ferromagnetic Model with Added Dzyaloshinskii-Moriya Interaction

    Full text link
    The one-dimensional (1D) isotropic frustrated ferromagnetic spin-1/2 model is considered. Classical and quantum effects of adding a Dzyaloshinskii-Moriya (DM) interaction on the ground state of the system is studied using the analytical cluster method and numerical Lanczos technique. Cluster method results, show that the classical ground state magnetic phase diagram consists of only one single phase: "chiral". The quantum corrections are determined by means of the Lanczos method and a rich quantum phase diagram including the gapless Luttinger liquid, the gapped chiral and dimer orders is obtained. Moreover, next nearest neighbors will be entangled by increasing DM interaction and for open chains, end-spins are entangled which shows the long distance entanglement (LDE) feature that can be controlled by DM interaction.Comment: 8 pages, 9 figure

    Measurement of the atmospheric muon charge ratio with the OPERA detector

    Get PDF
    The OPERA detector at the Gran Sasso underground laboratory (LNGS) was used to measure the atmospheric muon charge ratio in the TeV energy region. We analyzed 403069 atmospheric muons corresponding to 113.4 days of livetime during the 2008 CNGS run. We computed separately the muon charge ratio for single and for multiple muon events in order to select different energy regions of the primary cosmic ray spectrum and to test the charge ratio dependence on the primary composition. The measured charge ratio values were corrected taking into account the charge-misidentification errors. Data have also been grouped in five bins of the "vertical surface energy". A fit to a simplified model of muon production in the atmosphere allowed the determination of the pion and kaon charge ratios weighted by the cosmic ray energy spectrum.Comment: 14 pages, 10 figure

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    The detection of neutrino interactions in the emulsion/lead target of the OPERA experiment

    Full text link
    The OPERA neutrino detector in the underground Gran Sasso Laboratory (LNGS) was designed to perform the first detection of neutrino oscillations in appearance mode through the study of νμντ\nu_\mu\to\nu_\tau oscillations. The apparatus consists of an emulsion/lead target complemented by electronic detectors and it is placed in the high energy long-baseline CERN to LNGS beam (CNGS) 730 km away from the neutrino source. Runs with CNGS neutrinos were successfully carried out in 2007 and 2008 with the detector fully operational with its related facilities for the emulsion handling and analysis. After a brief description of the beam and of the experimental setup we report on the collection, reconstruction and analysis procedures of first samples of neutrino interaction events

    LHD diagnostics toward steady-state operation

    Get PDF
    The large helical device (LHD) is the world largest helical system having all superconducting coils. After completion of LHD in 1998, six experimental campaigns have been carried out successfully. The maximum stored energy, central electron temperature, and volume averaged beta value are 1.16 MJ, 10 keV, and 3.2%, respectively. The confinement time of the LHD plasma appears to be equivalent to that of tokamaks. One of the most important missions for LHD is to prove steady-state operation, which is also significant to international thermonuclear experimental reactor (ITER) and to future fusion reactors. LHD is quite appropriate for this purpose based upon the beneficial feature of a helical system, that is, no necessity of the plasma current. So far, the plasma discharge duration was achieved up to 150 s. The plasma density was kept constant by feedback control of gas puffing with real time information of the line density. The issue for demonstrating steady-state operation is whether divertor function to control particle and heat flux is effective enough. Relevant to this, LHD diagnostics should be consistent with the following: 1) continuous operation of main diagnostics during long-pulse operation for feedback control and physics understanding; 2) measurement of fraction of H, He, and impurities in the plasma; 3) heat removal and measure against possible damage or surface erosion of diagnostic components inside of the vacuum chamber; 4) data acquisition system for handling real time data display and a huge amount of data. Although there are already some achievements on the above subjects, there remain still several issues to be resolved. On the other hand, the long-pulse operation of the plasma gives benefits to the diagnostics. For example, the polarizing angle of ECE emission can be changed during the discharge, and the intensity dependence on the polarizing angle has been obtained. The spatial scanning of the neutral particle analyzer and the spectrometer can supply the spatial profiles of the fast neutral particle flux and the specific impurity lines. In this paper, the present status of these issues and future plans are described

    Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2

    Get PDF
    Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats

    Compatibility between high energy particle confinement and magnetohydrodynamic stability in the inward-shifted plasmas of the Large Helical Device

    Get PDF
    The experimentally optimized magnetic field configuration of the Large Helical Device [A. Iiyoshi et al., Nucl. Fusion 39, 1245 (1999)], where the magnetic axis is shifted inward by 15 cm from the early theoretical prediction, reveals 50% better global energy confinement than the prediction of the scaling law. This configuration has been investigated further from the viewpoints of high energy particle confinement and magnetohydrodynamic (MHD) stability. The confinement of high energy ions is improved as expected. The minority heating of ion cyclotron range of frequency was successful and the heating efficiency was improved by the inward shift. The confinement of passing particles by neutral beam injection was also improved under low magnetic field strength, and there could be obtained an almost steady high beta discharge up to 3% in volume average. This was a surprising result because the observed pressure gradient exceeded the Mercier unstable limit. The observed MHD activities became as high as beta but they did not grow enough to deteriorate the confinement of high energy ions or the performance of the bulk plasma, which was still 50% better than the scaling. According to these favorable results, better performance would be expected by increasing the heating power because the neoclassical transport can also be improved there

    Improved plasma performance on Large Helical Device

    Get PDF
    Since the start of the Large Helical Device (LHD) experiment, various attempts have been made to achieve improved plasma performance in LHD [A. Iiyoshi et al., Nucl. Fusion 39, 1245 (1999)]. Recently, an inward-shifted configuration with a magnetic axis position R_ax of 3.6 m has been found to exhibit much better plasma performance than the standard configuration with R_ax of 3.75 m. A factor of 1.6 enhancement of energy confinement time was achieved over the International Stellarator Scaling 95. This configuration has been predicted to have unfavorable magnetohydrodynamic (MHD) properties, based on linear theory, even though it has significantly better particle-orbit properties, and hence lower neoclassical transport loss. However, no serious confinement degradation due to the MHD activities was observed, resolving favorably the potential conflict between stability and confinement at least up to the realized volume-averaged beta of 2.4%. An improved radial profile of electron temperature was also achieved in the configuration with magnetic islands, minimized by an external perturbation coil system for the Local Island Divertor (LID). The LID has been proposed for remarkable improvement of plasma confinement like the high (H) mode in tokamaks, and the LID function was suggested in limiter experiments
    corecore