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Abstract—The large helical device (LHD) is the world largest
helical system having all superconducting coils. After completion
of LHD in 1998, six experimental campaigns have been carried
out successfully. The maximum stored energy, central electron
temperature, and volume averaged beta value are 1.16 MJ, 10
keV, and 3.2%, respectively. The confinement time of the LHD
plasma appears to be equivalent to that of tokamaks. One of
the most important missions for LHD is to prove steady-state
operation, which is also significant to international thermonuclear
experimental reactor (ITER) and to future fusion reactors. LHD
is quite appropriate for this purpose based upon the beneficial
feature of a helical system, that is, no necessity of the plasma
current. So far, the plasma discharge duration was achieved up to
150 s. The plasma density was kept constant by feedback control
of gas puffing with real time information of the line density. The
issue for demonstrating steady-state operation is whether divertor
function to control particle and heat flux is effective enough.
Relevant to this, LHD diagnostics should be consistent with the
following:

1) continuous operation of main diagnostics during long-pulse
operation for feedback control and physics understanding;

2) measurement of fraction of H, He, and impurities in the
plasma;

3) heat removal and measure against possible damage or sur-
face erosion of diagnostic components inside of the vacuum
chamber;

4) data acquisition system for handling real time data display
and a huge amount of data.

Although there are already some achievements on the above sub-
jects, there remain still several issues to be resolved.

On the other hand, the long-pulse operation of the plasma gives
benefits to the diagnostics. For example, the polarizing angle of
ECE emission can be changed during the discharge, and the in-
tensity dependence on the polarizing angle has been obtained. The
spatial scanning of the neutral particle analyzer and the spectrom-
eter can supply the spatial profiles of the fast neutral particle flux
and the specific impurity lines.

In this paper, the present status of these issues and future plans
are described.

Index Terms—Fusion reactors, helical system, plasma measure-
ments, stellarators.
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I. INTRODUCTION

I N RECENT years, magnetic plasma confinement experi-
ments for fusion energy have begun to progress beyond short

pulse physics experiments to machines designed to test the fea-
sibility for steady-state plasma confinement, which is essential
for reactor operation [1]–[3]. Concomitant with the design and
operation of such experiments is the need to develop the mea-
surement capabilities to diagnose such long duration plasmas.
In addition, the special challenges posed by a fusion reactor en-
vironment demand modifications and new techniques for mea-
suring the parameters needed for reactor operation and plasma
characterization [4].

Among the handful of devices, which are currently pursuing
the limits of long-pulse, high performance plasmas [1], [2], the
large helical device (LHD) is unique in its use of supercon-
ducting helical coils (one pair) and vertical field coils (three
pairs) in a heliotron configuration l/m to provide, in
steady state, the entire confining magnetic field (up to 2.9 T)
[3]. This externally formed confining field precludes the need
for the driven plasma current which is essential in a tokamak
and which limits the density by leading to discharge terminating
current disruptions in those types of devices. Therefore LHD is
inherently suited to steady-state operation and the development
of steady-state diagnostics.

LHD is one of the largest operating magnetic plasma con-
finement devices with a major radius which can be varied from
3.42 to 4.1 m, a minor radius which averages 60 cm and a
plasma volume on the order of 30 m [3]. LHD is well equipped
with a variety of plasma heating methods: neutral beam injec-
tion (NBI)—3 beam lines, 150–180 keV negative ion, 10 MW
total; ion cyclotron resonance heating (ICRH)—6 antenna, 2.7
MW total; electron cyclotron resonance heating (ECRH) 84 and
168 GHz, 2.1 MW total. The flexible combination of these
heating sources has enabled several notable achievements in
LHD: peak electron and ion temperatures exceeding 10 keV [5]
and 7 keV [6], respectively, the formation of an electron internal
transport barrier [7], averaged beta of 3.2% and a stored en-
ergy of 1.16 MJ [8] and a long-pulse duration of 120 s [9] which
has recently been extended to 150 s. In addition line-averaged
electron densities up to 1.6 10 m have been achieved [8]
and confinement time scaling which rivals ELMy H-mode toka-
maks has been demonstrated [10].
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The LHD experiment has a five-fold objective, which
includes the following:

1) to realize high plasmas and to study the transport
physics relevant to fusion plasmas;

2) to demonstrate high stable plasmas 5 and to
study the related physics;

3) to study energetic particle behaviors in order to simulate
particles in fusion plasmas;

4) to increase the physics understanding of toroidal plasmas
by an approach that is complementary with the other he-
lical systems and tokamaks;

5) to develop the physics and technology for steady-state
operation and control using a divertor.

In this paper, diagnostic developments related to steady-state
plasma experiments on LHD are described. In Section II,
the description of diagnostics is divided into four categories:
Primary diagnostics for physics studies and their suitability
for long-pulse experiments, diagnostics needed specifically for
steady-state operation, diagnostics which have been enhanced
through long-pulse experiments and development of data
acquisition systems for steady-state experiments. In Section III,
recent long-pulse experiments on LHD and their diagnosis are
described. Finally, in Section IV, unresolved issues related to
the steady-state experiments, particularly in a reactor environ-
ment are discussed and the article is summarized.

II. LHD DIAGNOSTICS

LHD has an extensive set of diagnostics for studying the
physics of plasma confinement [11], [44] as shown in Table I.
The arrangements of diagnostics and heating systems are
shown in Fig. 1.

A. Primary Diagnostics and Suitability for Steady State

The primary diagnostics on LHD can be classified into five
categories: 1) electron density diagnostics; 2) electron tempera-
ture diagnostics; 3) ion temperature diagnostics; 4) impurity ra-
diation diagnostics; and 5) others. In general, the diagnostics on
LHD are working routinely, also during long-pulse experiments.
The primary limitation on diagnostics in terms of steady-state
operation is the memory size of the data acquisition system. This
issue is discussed further is Section II-D. In this section, we will
briefly introduce each system and remark on any performance
issues related to steady-state operation.

1) Electron Density Diagnostics: On LHD various diagnos-
tics for measuring the electron density exist. A two-color mil-
limeter wave (MMW) interferometer is used to monitor the line-
averaged density [12]. A 13-channel far infrared (FIR) inter-
ferometer provides density profile measurements [13]. A mul-
tichord CO laser imaging interferometer is also under devel-
opment for detailed profile measurements of density and den-
sity fluctuations [14], [45]. In addition reflectometer [15] and
polarimeter [16] diagnostics are under development. For edge
density measurements Thomson scattering [17] can be used, and
also a lithium beam probe has recently begun operation [18].

2) Electron Temperature Diagnostics: Electron temper-
ature measurements include a high spatial resolution YAG
laser Thomson scattering system [19] with flexible repetition

TABLE I
LHD PLASMA DIAGNOSTICS

(from microseconds to hundreds of milliseconds) as shown in
Fig. 2. The calibration for the density is not yet completed,
so the density profile should be taken only as a reference. In
the figure, the short and long intervals are 300 s and 100 ms,
respectively. These numbers can be changed according to the
purpose. In addition to this, a TV Thomson scattering system
has been introduced recently with the goal of the high spatial
resolution. Also, three types of electron cyclotron emission
(ECE) diagnostics have been installed, grating polychromator,
radiometer and Michelson [20]. The ECE is proven as a reliable
diagnostic for the temporal development of the electron tem-
perature profile. The absolute electron temperature agrees well
with the Thomson scattering data in case of medium density.
When the electron density increases to 0.6 , then
the ECE temperature starts to decrease due to the diffraction of
the ray. This is due to the highly elliptical and twisted shape
of the LHD plasma resulting in a curved plasma surface in the
viewing field of the ECE antenna. Therefore, the refraction of
the ECE ray is not negligible if the electron density is more than
half of the cut off density. The refraction causes the diffusion
of the ECE ray so that the detected ECE intensity is reduced.
Soft X-ray diagnostics include a pulse height analyzer system
[21] and a soft X-ray charge-coupled device (CCD) imaging
system [22]. The electron temperature measured by the Soft
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Fig. 1. Arrangement of diagnostics and heating systems on LHD.

X-ray diagnostics agrees well also with the data measured by
the Thomson scattering system.

3) Ion Temperature Diagnostics: Ion temperature is mea-
sured on LHD using a crystal spectrometer for peak tempera-
ture (and also toroidal rotation velocity) [23], a charge exchange
recombination spectroscopy (CXRS) system for profile infor-
mation [24], and neutral particle analyzers for energy spectra
[25], [26], [46], [47]. The highest central ion temperature is ob-
tained from the Doppler broadening of Ar XVII measured by
the crystal spectrometer.

4) Impurity Radiation Diagnostics: Impurity radiation
from the LHD plasma is monitored with various arrays of spec-
trometers and bolometers. A 2-m soft X-ray duo-multichannel
spectrometer (SOXMOS) (0.5–34 nm) [27], a 3-m VUV
spectrometer using a CCD detector to provide a vertical profile
of the spectra [28] and a 50-cm UV-visible Czerny-Turner
type spectrometer (200–550 nm) [29] have been installed. An
impurity monitoring station consisting of nine 20-cm normal
incidence monochromators (30–180 nm), a 2.2-m grazing
incidence monochromator (10–120 nm), a 20-cm normal
incidence polychromator (30–550 nm), a flat field extreme
UV polychromator (1–10 nm, planned), H and He visible
monitors, total radiation monitor (using a secondary electron
multiplier), and a soft X-ray monitor [30]. The X-ray pulse
height analyzer is also used to measure heavy impurity emis-
sion [21]. Bolometers of three different types (resistive—56
ch, absolute extreme UV photodiode (AXUVD)—75 ch and
infrared (IR) imaging—three cameras) are used to measure
the total radiated power distribution from the plasma [31].
Resistive bolometers suffer from an uncompensated thermal

drift of the signal which is difficult to correct in the case of
long-pulse experiments. One possible solution to this problem
would be to have two sets of bolometers with shutters which
would be alternately closed for zeroing the amplifiers. Tracer
encapsulated solid pellets are used to investigate impurity
transport [32].

5) Other Diagnostics: For measuring the electric field the
CXRS system is used [24] and a heavy ion beam probe is under
development. MHD fluctuations are studied using arrays of soft
X-ray detectors, mirnov coils and the ECE diagnostics [20].
The soft X-ray detectors include PIN photodiode arrays [33]
and a high-speed soft X-ray imaging camera [34]. In addition
magnetic probes are used to measure the stored energy, plasma
current and the plasma position. Magnetic probes and other di-
agnostics using integrator circuits are not suitable for contin-
uous operation beyond 10 s due to saturation of the integrated
signal. One possible countermeasure to this problem is the use
of multiple integrator circuits, which are multiplexed to produce
a continuous measurement. Such a system is currently under
testing at NIFS. Another possible solution uses a rotating coil
probe and has been tested on the TRIAM device [35]. Langmuir
probes are installed in several locations in the divertor strike
plates and also a fast scanning probe is used to measure plasma
parameters in the divertor leg region [36].

B. Diagnostics for Steady-State Experiments

Diagnostics which are essential for steady-state operations
can be classified as either those for real-time monitoring or those
for feed-back control. Real-time monitoring is necessary to in-
sure that certain parameters do not exceed the limits of safe
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Fig. 2. One example (Shot no. 33 621) of (a) electron temperature and (b)
density profiles measured by a high spatial resolution YAG laser Thomson
scattering system.

operation. Feedback control is necessary when one measured
parameter is used to control a device in order to maintain the
plasma in a steady-state condition. These diagnostics and their
use on LHD are described in the following.

1) Real Time Monitoring: Real-time monitoring and
display of various parameters carried out during long-pulse
experiments in LHD using the WE7000 system described
below in Section II-D. These include core line-averaged elec-
tron density from the FIR interferometer, electron temperature
at several radii from the ECE radiometer, H , C , and O
signals from the impurity monitoring station, total radiated
power from AXUV photodiodes, ion saturation current from
divertor Langmuir probes and the temperatures of vacuum
window flanges using thermocouples at two different locations.
In addition to these, real-time video signals of visible light
and of various impurity lines (H , C , and O ) are available
[37]. One example of the CCD camera (3-O) view with H
filter at the bottom part of vertically elongated cross-section is
shown in Fig. 3, and the calculated magnetic field line trace is
also shown in Fig. 3. The characteristic structure agrees well.
Real time video is also used to monitor ICRF antennas and
the Local Island Divertor head for arcing and hot spots. Also,
IR thermography measurements monitor the temperature of

Fig. 3. (a) CCD camera (3-O) view with H� filter at the bottom part of
vertically elongated cross-section. (b) Calculated magnetic field line trace.

the graphite armor tiles of the neutral beam injection (NBI)
beam dumps [38]. Finally, for machine operation purposes
numerous thermocouples are installed throughout LHD [36]
and are sampled continuously and displayed at a 1-Hz sampling
rate along with measurements of the vacuum tank and cryostat
pressures.

2) Feed-Back Control: Various signals are used for feed-
back control of various devices to insure steady-state conditions
and device protection. Line averaged density signals from the
FIR interferometer are used to control the gas puff to maintain
a constant density during long-pulse discharges. Plasma current
signals from the Rogowski coils can be used to adjust the coil
currents to control the plasma current. This is done by calcu-
lating the necessary coil currents to change the plasma current
from the measured value to the target value and then adjusting
the coil currents accordingly in real time with a 100-ms control
period [39]. These plasma current signals, in addition to mea-
surements of the super conducting coil currents, can be used
to keep the coil currents constant or to keep the total magnetic
flux through the coils constant. A reflectometer is used to mon-
itor the density as an interlock signal for the NBI, to turn off the
beams in case of a premature termination of the plasma. The
super-conducting coils are protected by emergency shutdown
which can be triggered by various conditions: excessive coil
balance voltage; loss of vacuum in coil cryostat; loss of power
supply; strong earthquake; etc.

C. Benefits to Diagnostics From Steady-State Operation

Several diagnostics can benefit from the long time scales of
steady-state experiments. The VUV spectrometer can be slowly
rotated vertically (0.022–0.044 deg/s) during a steady-state dis-
charge to measure the spatial profile of the spectra [27]. As
shown in Fig. 4, radial distributions of spectral line intensities
have been obtained during a long-pulse discharge. Taking ad-
vantage of a stationary state of the plasma, the localization prop-
erty depending on ionization degree was clearly observed with
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Fig. 4. VUV spectrometer can be (a) rotated vertically during a steady-state
discharge to measure the (b) spatial profile of the spectra.

chord scanning. The 3-m VUV spectrometer is also designed to
be scanned toroidally providing a two-dimensional diagnostic
[28]. The polarizer for the ECE diagnostics [20] can be rotated
during the experiment to give a real-time measurement of the
polarization. The viewing angle of the NPA [25] can be scanned
to provide a measure of the loss cone. Many diagnostics can
benefit from increased integration times to improve photon sta-
tistics or spatial resolution, at the cost of time resolution during
discharges which are held in a steady state for a long period of
time. Examples of these diagnostics are TV Thomson scattering,
X-ray CCD camera [22] and imaging bolometers [30].

D. Data Acquisition

The data acquisition system for the LHD experiment uses two
systems, the standard one for data acquisition for post shot anal-
ysis and one for real-time display. The real-time display is han-
dled by a Yokogawa WE7000 system1 , which can sample at 20
kHz and display up to 32 channels in real-time. The standard

1Yokogawa Corporation of America. http://us.yokogawa.com.

TABLE II
SUMMARY OF LONG-PULSE ACHIEVEMENTS IN LHD

LHD data acquisition system is based on a massively par-
allel CAMAC (30 crates, 2000 diagnostic channels) /PC
(30 sets) /RAID (50 GB/PC) acquisition hardware, hierar-
chical double/mirrored storage media (RAID—2 TB, MO
jukebox—1.2 TB, DVD-ROM changer—3.2 TB), and a
cluster of data retrieval clients (50), all connected by a gi-
gabit-based network structure. The raw data are stored in an
object-oriented database which handles over 700 MB (100
MB compressed)/shot with approximately 150 shots per
experiment day with one shot every 3 min for standard short
pulse experiments (less than 10 s). For long-pulse experiments
typically the CAMAC sampling time is lengthened to extend
the acquisition period to match the pulselength, however, for
those diagnostics that require it (for example diagnostics used
to investigate fluctuations), event-driven triggering is available
for short acquisition periods with high sampling speeds. Dual
alternating systems with iterative operation (2–3 min) are
envisioned to allow indefinite continuous data acquisition and
storage at intermediate sampling rates (1–5 kHz).

A new real-time data acquisition system, which would re-
place the current CAMAC system, and is based on compact
platform component interconnect (PCI) technology2 is currently
under prototype testing at NIFS in cooperation with National In-
struments Corporation. The objective is to reach 1 MS/s/ch with
100 MB/s continuous data transfer. Currently, achieved param-
eters are 2.5 MS/s/ch and 84-MB/s transfer rate with improve-
ments expected as systems are gradually upgraded [40].

III. LHD STEADY-STATE EXPERIMENTS

Long-pulse experiments have progressed steadily [3] since
LHD’s first experimental campaign to reach the parameters
listed in Table II. Some notable achievements have been
the control of heavy impurities through the introduction of
a graphite helical divertor [41], and steady-state fueling by
means of continuous repetitive (11 Hz) injection of cryogenic
Hydrogen pellets [42], [48]. The vacuum vessel walls and the
helical divertor are actively cooled with flowing water with the
capability to remove 0.3 MW/m of power at the divertor in
steady state. This design would allow 3 MW of input power
assuming all was conducted to the divertor. Therefore, the
development of heating power supplies is being pursued with
the long term goal of 3 MW of ICH heating for one hour.
The short term goal for the next experimental campaign is to

2National Instruments Inc. http://www.ni.com.
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Fig. 5. Long-pulse discharge in LHD heated with NBI and terminated
by radiative collapse showing: (a) time evolution of major parameters:
line-averaged electron density from FIR interferometer, electron temperature
from ECE and total radiated power from AXUVD with hydrogen gas puffing;
(b) time evolution of selected spectral lines from the VUV spectrometer;
and (c) impurity radiation spectra in the 10 ÿ 20 nm region from the VUV
spectrometer just prior to the radiative collapse.

TABLE III
UNRESOLVED ISSUES FOR STEADY STATE FUSION REACTOR DIAGNOSTICS

perform a 5-min ECH discharge with 100 kW of input power.
In Fig. 5, the desorption effect during an NBI long-pulse
experiment is shown with emphasis on the time evolution of
the neon radiation [9]. In this plasma, the working gas was
hydrogen, but neon plasma experiments had been done in the
previous days.

IV. DISCUSSION CONCLUSION

In this paper, we have described the diagnostics in LHD in
terms of their suitability for and benefits from long-pulse exper-
iments. However, several topics related to diagnostics for a fu-
sion reactor have not been mentioned and are listed in Table III;
these include heat removal, shielding from neutrons, nuclear
heating, and activation.

In the case of heat removal for diagnostics in LHD, most di-
agnostics are mounted on the large port flanges outside of the
vacuum vessel. Since they are relatively far from the plasma the
steady-state heat load from radiation is quite low kW/m
and can be handled by the connection to the vacuum vessel.
As a precautionary measure, diagnostics that are located inside
the vacuum vessel and have components that might outgas at

high temperature are water-cooled (e.g., SX diode arrays and
AXUVD arrays). In a reactor environment, however, much more
attention should be paid to heat removal as the heat loads would
be much higher.

Another important issue is the coating of vacuum windows
by dust and other deposited materials. Analysis of dust col-
lected from LHD after the third campaign (in March of 2001)
showed very small amounts of Fe-C composite dust spread
throughout the machine [43]. In terms of coating of windows,
shutters are used to prevent this from happening during glow
discharge cleaning and wall conditioning. However, the large
number of discharges during one campaign (up to 10 000)
has lead to some loss of transmission in some windows. For
instance the Thomson scattering system has a large vacuum
window which is covered on the vacuum side by another
window 65 40 12mm which is replaced annually. The
reduction in transmission on this window is typically less than
10%. Slight reductions in transmission have been observed in
other windows in the visible range, but this effect is harder to
estimate for the UV range.

Also in a reactor, the consequences of the high-energy neu-
trons must be considered. This would include neutron shielding
of sensitive diagnostics, remote handling for maintenance of ac-
tivated components, nuclear heating of diagnostics, etc. Since in
LHD we will not use tritium fuel and the expected neutron fluxes
from planned D–D experiments are much lower than expected
in a reactor, this is not an important issue for LHD.

Other important and challenging issues for reactors are the
diagnosis of fast neutron fluxes of the transport of fast alpha
products. However, these reactor-related issues are difficult to
address in a nonreactor environment.
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