97 research outputs found

    Serine/threonine acetylation of TGFbeta-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling

    Get PDF
    The Gram-negative bacteria Yersinia pestis, causative agent of plague, is extremely virulent. One mechanism contributing to Y. pestis virulence is the presence of a type-three secretion system, which injects effector proteins, Yops, directly into immune cells of the infected host. One of these Yop proteins, YopJ, is proapoptotic and inhibits mammalian NF-kappaB and MAP-kinase signal transduction pathways. Although the molecular mechanism remained elusive for some time, recent work has shown that YopJ acts as a serine/threonine acetyl-transferase targeting MAP2 kinases. Using Drosophila as a model system, we find that YopJ inhibits one innate immune NF-kappaB signaling pathway (IMD) but not the other (Toll). In fact, we show YopJ mediated serine/threonine acetylation and inhibition of dTAK1, the critical MAP3 kinase in the IMD pathway. Acetylation of critical serine/threonine residues in the activation loop of Drosophila TAK1 blocks phosphorylation of the protein and subsequent kinase activation. In addition, studies in mammalian cells show similar modification and inhibition of hTAK1. These data present evidence that TAK1 is a target for YopJ-mediated inhibition

    Role of the Lateral Paragigantocellular Nucleus in the Network of Paradoxical (REM) Sleep: An Electrophysiological and Anatomical Study in the Rat

    Get PDF
    The lateral paragigantocellular nucleus (LPGi) is located in the ventrolateral medulla and is known as a sympathoexcitatory area involved in the control of blood pressure. In recent experiments, we showed that the LPGi contains a large number of neurons activated during PS hypersomnia following a selective deprivation. Among these neurons, more than two-thirds are GABAergic and more than one fourth send efferent fibers to the wake-active locus coeruleus nucleus. To get more insight into the role of the LPGi in PS regulation, we combined an electrophysiological and anatomical approach in the rat, using extracellular recordings in the head-restrained model and injections of tracers followed by the immunohistochemical detection of Fos in control, PS-deprived and PS-recovery animals. With the head-restrained preparation, we showed that the LPGi contains neurons specifically active during PS (PS-On neurons), neurons inactive during PS (PS-Off neurons) and neurons indifferent to the sleep-waking cycle. After injection of CTb in the facial nucleus, the neurons of which are hyperpolarized during PS, the largest population of Fos/CTb neurons visualized in the medulla in the PS-recovery condition was observed in the LPGi. After injection of CTb in the LPGi itself and PS-recovery, the nucleus containing the highest number of Fos/CTb neurons, moreover bilaterally, was the sublaterodorsal nucleus (SLD). The SLD is known as the pontine executive PS area and triggers PS through glutamatergic neurons. We propose that, during PS, the LPGi is strongly excited by the SLD and hyperpolarizes the motoneurons of the facial nucleus in addition to local and locus coeruleus PS-Off neurons, and by this means contributes to PS genesis

    Telomerase promoter mutations in cancer: an emerging molecular biomarker?

    Get PDF
    João Vinagre, Vasco Pinto and Ricardo Celestino contributed equally to the manuscript.Cell immortalization has been considered for a long time as a classic hallmark of cancer cells. Besides telomerase reactivation, such immortalization could be due to telomere maintenance through the “alternative mechanism of telomere lengthening” (ALT) but the mechanisms underlying both forms of reactivation remained elusive. Mutations in the coding region of telomerase gene are very rare in the cancer setting, despite being associated with some degenerative diseases. Recently, mutations in telomerase (TERT) gene promoter were found in sporadic and familial melanoma and subsequently in several cancer models, notably in gliomas, thyroid cancer and bladder cancer. The importance of these findings has been reinforced by the association of TERT mutations in some cancer types with tumour aggressiveness and patient survival. In the first part of this review, we summarize the data on the biology of telomeres and telomerase, available methodological approaches and non-neoplastic diseases associated with telomere dysfunction. In the second part, we review the information on telomerase expression and genetic alterations in the most relevant types of cancer (skin, thyroid, bladder and central nervous system) on record, and discuss the value of telomerase as a new biomarker with impact on the prognosis and survival of the patients and as a putative therapeutic target

    Human cell types important for Hepatitis C Virus replication in vivo and in vitro. Old assertions and current evidence

    Get PDF
    Hepatitis C Virus (HCV) is a single stranded RNA virus which produces negative strand RNA as a replicative intermediate. We analyzed 75 RT-PCR studies that tested for negative strand HCV RNA in liver and other human tissues. 85% of the studies that investigated extrahepatic replication of HCV found one or more samples positive for replicative RNA. Studies using in situ hybridization, immunofluorescence, immunohistochemistry, and quasispecies analysis also demonstrated the presence of replicating HCV in various extrahepatic human tissues, and provide evidence that HCV replicates in macrophages, B cells, T cells, and other extrahepatic tissues. We also analyzed both short term and long term in vitro systems used to culture HCV. These systems vary in their purposes and methods, but long term culturing of HCV in B cells, T cells, and other cell types has been used to analyze replication. It is therefore now possible to study HIV-HCV co-infections and HCV replication in vitro

    Hippocampal Mechanisms for the Segmentation of Space by Goals and Boundaries

    Get PDF

    NMDA-Dependent Phase Synchronization between Septal and Temporal CA3 Hippocampal Networks

    No full text
    International audienc

    Improved outcome of children transplanted for high-risk leukemia by using a new strategy of cyclosporine-based GVHD prophylaxis

    No full text
    International audienceThere is currently a major concern regarding the optimal immunosuppression therapy to be administered after hematopoietic stem cell transplantation (HSCT) to reduce both the toxicity of GvHD and the rate of relapse. We report the outcome of high-risk leukemia children transplanted with a new way of managing cyclosporine (CsA)-based GvHD prophylaxis. A total of 110 HSCT in 109 ALL or AML children who received CsA without mycophenolate or methotrexate in matched related as well as in matched or mismatched unrelated stem cell transplantation were included. CsA dosage regimens were individualized to obtain specific trough blood concentrations values. The incidences of grade I-II and III-IV acute GvHD were 69.1% and 1.8%, respectively, and 8.4% for chronic GvHD. GvHD was neither more frequent nor severe in unrelated than in related HSCT. GvHD occurred in 87% of patients with a mean CsA trough concentration â©˝120 ng/mL versus 43% with concentration >120 ng/mL (P<0.0001). Five-year disease-free survival (DFS) and overall survival were 78% and 83.6%, respectively. DFS was 76.9% for ALL and 80.4% for AML patients. There was no difference in DFS between matched siblings and matched unrelated or mismatched unrelated HSCT. DFS in patients with minimal residual disease (MRD) â©ľ10(-3) and in those with MRD <10(-3) before SCT was comparable. Our results indicate that a GvHD prophylaxis regimen based on CsA without mycophenolate or methotrexate is safe and effective whatever the donor compatibility is. These results suggest that GvL effect may be enhanced by this strategy of GvHD prophylaxis

    The chemotherapeutic agent DMXAA potently and specifically activates the TBK1-IRF-3 signaling axis

    Get PDF
    Vascular disrupting agents (VDAs) represent a novel approach to the treatment of cancer, resulting in the collapse of tumor vasculature and tumor death. 5,6-dimethylxanthenone-4-acetic acid (DMXAA) is a VDA currently in advanced phase II clinical trials, yet its precise mechanism of action is unknown despite extensive preclinical and clinical investigations. Our data demonstrate that DMXAA is a novel and specific activator of the TANK-binding kinase 1 (TBK1)-interferon (IFN) regulatory factor 3 (IRF-3) signaling pathway. DMXAA treatment of primary mouse macrophages resulted in robust IRF-3 activation and approximately 750-fold increase in IFN-beta mRNA, and in contrast to the potent Toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS), signaling was independent of mitogen-activated protein kinase (MAPK) activation and elicited minimal nuclear factor kappaB-dependent gene expression. DMXAA-induced signaling was critically dependent on the IRF-3 kinase, TBK1, and IRF-3 but was myeloid differentiation factor 88-, Toll-interleukin 1 receptor domain-containing adaptor inducing IFN-beta-, IFN promoter-stimulator 1-, and inhibitor of kappaB kinase-independent, thus excluding all known TLRs and cytosolic helicase receptors. DMXAA pretreatment of mouse macrophages induced a state of tolerance to LPS and vice versa. In contrast to LPS stimulation, DMXAA-induced IRF-3 dimerization and IFN-beta expression were inhibited by salicylic acid. These findings detail a novel pathway for TBK1-mediated IRF-3 activation and provide new insights into the mechanism of this new class of chemotherapeutic drugs
    • …
    corecore