1,230 research outputs found

    Conversation with Prof. Geoff Masters AO, CEO, ACER and Ms Julia Gillard, Former Prime Minister of Australia

    Get PDF
    Listen to the conversation here: http://teacher.acer.edu.au/article/exclusive-a-conversation-between-julia-gillard-and-professor-geoff-master

    Stochastic antiresonance in qubit phase estimation with quantum thermal noise

    Get PDF
    We consider the fundamental quantum information processing task consisting in estimating the phase of a qubit. Following quantum measurement, the estimation performance is evaluated by the classical Fisher information which determines the best performance limiting any estimator and achievable by the maximum likelihood estimator. Estimation is analyzed in the presence of decoherence represented by a quantum thermal noise at arbitrary temperature. As the noise temperature is increased, we show the possibility of nontrivial behaviors of decoherence, with an estimation performance which does not necessarily degrade uniformly, but can experience nonmonotonic evolutions. Regimes are found where higher noise temperatures turn more favorable to estimation. Such behaviors are related to stochastic resonance or antiresonance effects, where noise reveals beneficial to information processing

    Entropie de von Neumann et information de Holevo pour le signal quantique en présence de bruit

    Get PDF
    Entropie de von Neumann et information de Holevo pour le signal quantique en présence de bruit

    Stochastic resonance with unital quantum noise

    Get PDF
    The fundamental quantum information processing task of estimating the phase of a qubit is considered. Following quantum measurement, the estimation efficiency is evaluated by the classical Fisher information which determines the best performance limiting any estimator and achievable by the maximum likelihood estimator. The estimation process is analyzed in the presence of decoherence represented by essential quantum noises that can affect the qubit and belonging to the broad class of unital quantum noises. Such a class especially contains the bit-flip, the phase-flip, the depolarizing noises, or the whole family of Pauli noises. As the level of noise is increased, we report the possibility of non-standard behaviors where the estimation efficiency does not necessarily deteriorate uniformly, but can experience non-monotonic variations. Regimes are found where higher noise levels prove more favorable to estimation. Such behaviors are related to stochastic resonance effects in signal estimation, shown here feasible for the first time with unital quantum noises. The results provide enhanced appreciation of quantum noise or decoherence, manifesting that it is not always detrimental for quantum information processing

    Qubit state detection and enhancement by quantum thermal noise

    Get PDF
    The task fundamental to quantum communication and coding is considered which consists of detecting between two possible states of a noisy qubit, with a performance assessed by the overall probability of detection error. The detection process operates in the presence of decoherence represented by a quantum thermal noise at an arbitrary temperature. With uneven prior probabilities of the two states, as the noise temperature is increased, non-monotonic evolutions are reported for the performance, which does not uniformly degrade. Regimes are found where higher noise temperatures are more favourable to detection, with relation to stochastic resonance effects where noise reveals beneficial to information processing

    L’intrication en imagerie quantique pour résister au bruit

    Get PDF
    L’intrication en imagerie quantique pour résister au bruit

    The barriers to and enablers of providing reasonably adjusted health services to people with intellectual disabilities in acute hospitals: evidence from a mixed-methods study.

    Get PDF
    OBJECTIVE: To identify the factors that promote and compromise the implementation of reasonably adjusted healthcare services for patients with intellectual disabilities in acute National Health Service (NHS) hospitals. DESIGN: A mixed-methods study involving interviews, questionnaires and participant observation (July 2011-March 2013). SETTING: Six acute NHS hospital trusts in England. METHODS: Reasonable adjustments for people with intellectual disabilities were identified through the literature. Data were collected on implementation and staff understanding of these adjustments. RESULTS: Data collected included staff questionnaires (n=990), staff interviews (n=68), interviews with adults with intellectual disabilities (n=33), questionnaires (n=88) and interviews (n=37) with carers of patients with intellectual disabilities, and expert panel discussions (n=42). Hospital strategies that supported implementation of reasonable adjustments did not reliably translate into consistent provision of such adjustments. Good practice often depended on the knowledge, understanding and flexibility of individual staff and teams, leading to the delivery of reasonable adjustments being haphazard throughout the organisation. Major barriers included: lack of effective systems for identifying and flagging patients with intellectual disabilities, lack of staff understanding of the reasonable adjustments that may be needed, lack of clear lines of responsibility and accountability for implementing reasonable adjustments, and lack of allocation of additional funding and resources. Key enablers were the Intellectual Disability Liaison Nurse and the ward manager. CONCLUSIONS: The evidence suggests that ward culture, staff attitudes and staff knowledge are crucial in ensuring that hospital services are accessible to vulnerable patients. The authors suggest that flagging the need for specific reasonable adjustments, rather than the vulnerable condition itself, may address some of the barriers. Further research is recommended that describes and quantifies the most frequently needed reasonable adjustments within the hospital pathways of vulnerable patient groups, and the most effective organisational infrastructure required to guarantee their use, together with resource implications

    The all-sky distribution of 511 keV electron-positron annihilation emission

    Full text link
    We present a map of 511 keV electron-positron annihilation emission, based on data accumulated with the SPI spectrometer aboard ESA's INTEGRAL gamma-ray observatory, that covers approximately 95% of the celestial sphere. 511 keV line emission is significantly detected towards the galactic bulge region and, at a very low level, from the galactic disk. The bulge emission is highly symmetric and is centred on the galactic centre with an extension of 8 deg. The emission is equally well described by models that represent the stellar bulge or halo populations. The disk morphology is only weakly constrained by the present data, being compatible with both the distribution of young and old stellar populations. The 511 keV line flux from the bulge and disk components is 1.05e-3 ph cm-2 s-1 and 0.7e-3 ph cm-2 s-1, respectively, corresponding to a bulge-to-disk flux ratio in the range 1-3. Assuming a positronium fraction of 0.93 this translates into annihilation rates of 1.5e43 s-1 and 3e42 s-1, respectively. The ratio of the bulge luminosity to that of the disk is in the range 3-9. We find no evidence for a point-like source in addition to the diffuse emission, down to a typical flux limit of 1e-4 ph cm-2 s-1. We also find no evidence for the positive latitude enhancement that has been reported from OSSE measurements; our 3 sigma upper flux limit for this feature is 1.5e-4 ph cm-2 s-1. The disk emission can be attributed to the beta+ decay of the radioactive species 26Al and 44Ti. The bulge emission arises from a different source which has only a weak or no disk component. We suggest that Type Ia supernovae and/or low-mass X-ray binaries are the prime candidates for the source of the galactic bulge positrons. Light dark matter annihilation could also explain the observed 511 keV bulge emission characteristics.Comment: accepted for publication in A&

    Enhancing qubit information with quantum thermal noise

    Get PDF
    Informational quantities characterizing the qubit are analyzed in the presence of quantum thermal noise modeling the decoherence process due to interaction with the environment represented as a heat bath at arbitrary temperature. Nontrivial regimes of variation are reported for the informational quantities, which do not necessarily degrade monotonically as the temperature of the thermal noise increases, but on the contrary can experience nonmonotonic variations where higher noise temperatures can prove more favorable. Such effects show that increased quantum decoherence does not necessarily entail poorer informational performance, and they are related to stochastic resonance or noise-enhanced efficiency in information processing

    Estimation quantique en présence de bruit améliorée par l’intrication

    Get PDF
    Estimation quantique en présence de bruit améliorée par l’intrication
    • …
    corecore