1,172 research outputs found

    "Wet-to-Dry" Conformational Transition of Polymer Layers Grafted to Nanoparticles in Nanocomposite

    Get PDF
    The present communication reports the first direct measurement of the conformation of a polymer corona grafted around silica nano-particles dispersed inside a nanocomposite, a matrix of the same polymer. This measurement constitutes an experimental breakthrough based on a refined combination of chemical synthesis, which permits to match the contribution of the neutron silica signal inside the composite, and the use of complementary scattering methods SANS and SAXS to extract the grafted polymer layer form factor from the inter-particles silica structure factor. The modelization of the signal of the grafted polymer on nanoparticles inside the matrix and the direct comparison with the form factor of the same particles in solution show a clear-cut change of the polymer conformation from bulk to the nanocomposite: a transition from a stretched and swollen form in solution to a Gaussian conformation in the matrix followed with a compression of a factor two of the grafted corona. In the probed range, increasing the interactions between the grafted particles (by increasing the particle volume fraction) or between the grafted and the free matrix chains (decreasing the grafted-free chain length ratio) does not influence the amplitude of the grafted brush compression. This is the first direct observation of the wet-to-dry conformational transition theoretically expected to minimize the free energy of swelling of grafted chains in interaction with free matrix chains, illustrating the competition between the mixing entropy of grafted and free chains, and the elastic deformation of the grafted chains. In addition to the experimental validation of the theoretical prediction, this result constitutes a new insight for the nderstanding of the general problem of dispersion of nanoparticles inside a polymer matrix for the design of new nanocomposites materials

    A Scintillating Fiber Tracker With SiPM Readout

    Full text link
    We present a prototype for the first tracking detector consisting of 250 micron thin scintillating fibers and silicon photomultiplier (SiPM) arrays. The detector has a modular design, each module consists of a mechanical support structure of 10mm Rohacell foam between two 100 micron thin carbon fiber skins. Five layers of scintillating fibers are glued to both top and bottom of the support structure. SiPM arrays with a channel pitch of 250 micron are placed in front of the fibers. We show the results of the first module prototype using multiclad fibers of types Bicron BCF-20 and Kuraray SCSF-81M that were read out by novel 32-channel SiPM arrays from FBK-irst/INFN Perugia as well as 32-channel SiPM arrays produced by Hamamatsu. A spatial resolution of 88 micron +/- 6 micron at an average yield of 10 detected photons per minimal ionizig particle has been achieved.Comment: 5 pages, 7 figures, submitted as proceedings to the 11th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD08

    Silicon photomultiplier arrays - a novel photon detector for a high resolution tracker produced at FBK-irst, Italy

    Full text link
    A silicon photomultiplier (SiPM) array has been developed at FBK-irst having 32 channels and a dimension of 8.0 x 1.1 mm^2. Each 250 um wide channel is subdivided into 5 x 22 rectangularly arranged pixels. These sensors are developed to read out a modular high resolution scintillating fiber tracker. Key properties like breakdown voltage, gain and photon detection efficiency (PDE) are found to be homogeneous over all 32 channels of an SiPM array. This could make scintillating fiber trackers with SiPM array readout a promising alternative to available tracker technologies, if noise properties and the PDE are improved

    Impact of Demand-Response on the Efficiency and Prices in Real-Time Electricity Markets

    Get PDF
    International audienceWe study the effect of Demand-Response (DR) in dynamic real-time electricity markets. We use a two-stage market model that takes into account the dynamical aspects of gen-eration, demand, and DR. We study the real-time market prices in two scenarios: in the former, consumers anticipate or delay their flexible loads in reaction to market prices; in the latter, the flexible loads are controlled by an independent aggregator. For both scenarios, we show that, when users are price-takers, any competitive equilibrium is efficient: the players' selfish responses to prices coincide with a socially optimal policy. Moreover, the price process is the same in all scenarios. For the numerical evaluation of the properties of the equilibrium, we develop a solution technique based on the Alternating Direction Method of Multipliers (ADMM) and trajectorial forecasts. The forecasts are computed us-ing wind generation data from the UK. We challenge the assumption that all players have full information. If the as-sumption is verified, then, as expected, the social welfare increases with the amount of DR available, since DR relaxes the ramping constraints of generation. However, if the day-ahead market cannot observe how elastic loads are affected by DR, a large quantity of DR can be detrimental and leads to a decrease in the welfare. Furthermore, the DR operator has an incentive to under-dimension the quantity of avail-able DR. Finally, we compare DR with an actual energy storage system. We find that storage has a faster response-time and thus performs better when only a limited amount is installed. However, storage suffers from charge-discharge in-efficiency: with DR, prices do concentrate on marginal cost (for storage, they do not) and provide a better welfare

    Gel transitions in colloidal suspensions

    Full text link
    The idealized mode coupling theory (MCT) is applied to colloidal systems interacting via short-range attractive interactions of Yukawa form. At low temperatures MCT predicts a slowing down of the local dynamics and ergodicity breaking transitions. The nonergodicity transitions share many features with the colloidal gel transition, and are proposed to be the source of gelation in colloidal systems. Previous calculations of the phase diagram are complemented with additional data for shorter ranges of the attractive interaction, showing that the path of the nonergodicity transition line is then unimpeded by the gas-liquid critical curve at low temperatures. Particular attention is given to the critical nonergodicity parameters, motivated by recent experimental measurements. An asymptotic model is developed, valid for dilute systems of spheres interacting via strong short-range attractions, and is shown to capture all aspects of the low temperature MCT nonergodicity transitions.Comment: 12 pages, LaTeX, 5 eps figures, uses ioplppt.sty, to appear in J. Phys.: Condens. Matte

    Application of a magnetic suspension balance to the oxidation study of the zirconium based alloys under high pressurewater vapour

    Get PDF
    International audienceThe fuel claddings in the Pressurised Water Reactor are corroded in water at high temperature and high pressure. The technical device ableto follow continuously the corrosion rate in conditions close to this medium does not yet exist. That is the reason why a high pressure thermogravimetric installation based on magnetic suspension has been designed to study in situ the oxidation kinetics of the zirconium based alloys under water vapour until 50 bars of pressure at 415°C. The accuracy of measurements is about 5•10–5 g under 2 bars, and 10–4 g under 50 bars. The reproducibility of measurements was verified and the deviation regarding post test weighing at room temperature is around 5•10–5 g what is clearly satisfying. Finally, the results presented in this work allow validating the high pressure thermogravimetric measurements obtained with this magnetic suspension device

    Critical phenomena in colloid-polymer mixtures: interfacial tension, order parameter, susceptibility and coexistence diameter

    Full text link
    The critical behavior of a model colloid-polymer mixture, the so-called AO model, is studied using computer simulations and finite size scaling techniques. Investigated are the interfacial tension, the order parameter, the susceptibility and the coexistence diameter. Our results clearly show that the interfacial tension vanishes at the critical point with exponent 2\nu ~ 1.26. This is in good agreement with the 3D Ising exponent. Also calculated are critical amplitude ratios, which are shown to be compatible with the corresponding 3D Ising values. We additionally identify a number of subtleties that are encountered when finite size scaling is applied to the AO model. In particular, we find that the finite size extrapolation of the interfacial tension is most consistent when logarithmic size dependences are ignored. This finding is in agreement with the work of Berg et al.[Phys. Rev. B, V47 P497 (1993)]Comment: 13 pages, 16 figure

    Lithium Phthalocyanine: A Probe for Electron Paramagnetic Resonance Oximetry in Viable Biological Systems.

    Get PDF
    Lithium phthalocyanine (LiPc) is a prototype of another generation of synthetic, metallic-organic, paramagnetic crystallites that appear very useful for in vitro and in vivo electron paramagnetic resonance oximetry. The peak-to-peak line width of the electron paramagnetic resonance spectrum of LiPc is a linear function of the partial pressure of oxygen (pO2); this linear relation is independent of the medium surrounding the LiPc. It has an extremely exchange-narrowed spectrum (peak-to-peak line width = 14 mG in the absence of O2). Physicochemically LiPc is very stable; its response to pO2 does not change with conditions and environments (e.g., pH, temperature, redox conditions) likely to occur in viable biological systems. These characteristics provide the sensitivity, accuracy, and range to measure physiologically and pathologically pertinent O2 tensions (0.1-50 mmHg; 1 mmHg = 133 Pa). The application of LiPc in biological systems is demonstrated in measurements of pO2 in vivo in the heart, brain, and kidney of rats

    Worm Epidemics in Wireless Adhoc Networks

    Full text link
    A dramatic increase in the number of computing devices with wireless communication capability has resulted in the emergence of a new class of computer worms which specifically target such devices. The most striking feature of these worms is that they do not require Internet connectivity for their propagation but can spread directly from device to device using a short-range radio communication technology, such as WiFi or Bluetooth. In this paper, we develop a new model for epidemic spreading of these worms and investigate their spreading in wireless ad hoc networks via extensive Monte Carlo simulations. Our studies show that the threshold behaviour and dynamics of worm epidemics in these networks are greatly affected by a combination of spatial and temporal correlations which characterize these networks, and are significantly different from the previously studied epidemics in the Internet

    Evolutionary game of coalition building under external pressure

    Get PDF
    We study the fragmentation-coagulation (or merging and splitting) evolutionary control model as introduced recently by one of the authors, where NN small players can form coalitions to resist to the pressure exerted by the principal. It is a Markov chain in continuous time and the players have a common reward to optimize. We study the behavior as NN grows and show that the problem converges to a (one player) deterministic optimization problem in continuous time, in the infinite dimensional state space
    • …
    corecore