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Chapter 1
Evolutionary game of coalition building under
external pressure

Alekos Cecchin and Vassili N. Kolokoltsov

Abstract We study the fragmentation-coagulation, or merging and splitting, model
as introduced in [16], where N small players can form coalitions to resist to the
pressure exerted by the principal. It is a Markov chain in continuous time and the
players have a common reward to optimize. We study the behavior as N grows
and show that the problem converges to a (one player) deterministic optimization
problem in continuous time, in the infinite dimensional state space `1. We apply
the method developed in [8], adapting it to our different framework. We use tools
involving dynamics in `1, generators of Markov processes, martingale problems and
coupling of Markov chains.

Key words: Fragmentation-coagulation, merging and splitting, evolutionary coali-
tion formation, Markov decision process, major agent, mean field limit.

1.1 Introduction

In this paper we study dynamic optimization problems on Markov decision pro-
cesses composed of a large number of interacting agents, in particular we investigate
the so called fragmentation-coagulation, or merging and splitting, model. Our aim
is to analyze its limit as the number of players tends to infinity.

Following Kolokoltsov [16] we describe a model which is a Markov chain in
continuous time. A natural reaction of the society of small players to the pressure
exerted by the principal can be executed by forming stable groups that can con-
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front this pressure in an effective manner (but possibly imposing certain obligatory
regulations for the members of the group). Analysis of such possibility leads one
naturally to models of mean field enhanced coagulation processes under external
pressure. The major player can change her strategy only in discrete deterministic
time.

Coagulation fragmentation processes are well studied in statistical physics, see
e. g. [19]. In particular, general mass exchange processes, that in our social envi-
ronment become general coalition forming processes preserving the total number of
participants, were analyzed in [13] and [14] with their law of large number limits
for discrete and general state spaces. In the same way problems in economics, like
merging banks or firms on the market, were studied in [21] and [22]. While an ap-
plication to scientific citation networks or the network of internet links is discussed
in [17]. Some simple situation of nonlinear Markov games on a finite state space
was analyzed in [15], proving the convergence of Nash-equilibria for finite games
to equilibria of a limiting deterministic differential game.

Very recently, several authors have studied games of coalition formation. A no-
tion of core equilibrium in proposed in [9], and found via a fixed point method.
An application to contracts and networks is analyzed in [10]. A study of the in-
centives offered by the government to municipalities to merge into larger groups is
provided in [24]. Players preferences over winning coalitions are derived by apply-
ing strongly monotonic power indices on the game in [12], where the author also
investigate whether there are core stable coalitions . An application of systems of
coalition formation to the climate change problem is discussed in [7], where also
numerical simulation are performed.

Here we are interested in the response of such systems to external parameters that
may be set by the principal who has her own agenda. Thus we add to the analysis
a major player fitting the model to a more general framework. There are two main
difficulties in studying this model. Firstly the total number of coalitions is not con-
stant in time, as they can merge or split. Secondly the dynamics both of the system
of small players and of the limiting system are supposed to lie on the infinite dimen-
sional space `1, which can be viewed also as a space of measures, instead of a fixed
Rd . In fact the dimension of the state space for the system of coalitions grows as the
number N of small players tends to infinity. If the system is in the state x ∈ `1 then
xk = hnk where nk is the number of coalitions of size k and h is a suitable parameter
depending on N, for instance the inverse of the initial number of coalitions.

Our main result is to show that this problem converges, as N grows, to a one
player deterministic optimization problem in continuous time, in the infinite dimen-
sional state space `1, the so called mean field limit. We prove convergence of the
value functions and provide also an approximated optimal policy for the system of
small players. Such optimal policy is usually found by using dynamic programming
for the finite horizon case, but this approach suffer from the curse of dimensionality,
which makes them impractical when the state space is too large. Solving the HJB
equation for the limiting system numerically is sometimes rather easy. It provides
a deterministic optimal policy whose reward is remarkably close to the optimal re-
ward.
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We apply the method developed by Gast, Gaujal and Le Boudec in [8], where the
authors obtained the same kind of results , but in a different setting. They consider
discrete time Markov chains as prelimit systems whose state space is finite and
fixed. Their proofs are in line with classic mean field arguments and use stochastic
approximation techniques. Moreover their approach is algorithmic: they construct
two intermediate systems: one with a finite number of objects controlled by a limit
policy and one with a limit system controlled by a stochastic policy induced by the
finite system.

Several papers in the literature are concerned with the problem of mixing the
limiting behavior of a large number of objects with optimization. In [5], the value
function of the Markov decision process (MDP) is approximated by a linearly
parametrized class of functions and a fluid approximation of the MDP is used. It
is shown that a solution of the HJB equation is a value function for a modifica-
tion of the original MDP problem. In [23], the curse of dimensionality of dynamic
programming is circumvented by approximating the value function by linear regres-
sion. In [8] they use instead a mean field limit approximation and prove asymptotic
optimality in N of limit policy. Actually, most of the papers dealing with mean field
limits of optimization problems over large systems are set in a game theory frame-
work, leading to the concept of mean field games, introduced by Lasry and Lions
[18] and P.E. Caines, M. Huang and R.P. Malhamé [2].

Notice finally that in this paper we analyze only a preliminary step for a full game
setting with major and minor players, namely the response of the minor players to
the action of the major one. The full analysis (not developed here) would include
the reaction of the major on the behavior of the minor players and the search for
the corresponding equilibrium. However, this development does not seem to present
serious difficulty, since our analysis reduces it effectively to a two-player game: the
major and the pool of small players.

Contribution and structure of the paper

In [16] Kolokoltsov shows the convergence of the optimization problems related to
the system of small players to an optimization problem in discrete time for the lim-
iting system (this will be similar to theorem 3). His proof is based on an argument
that is focused on the generators of the Markov chains and shows their convergence.
In this paper we want to show the convergence to an optimization problem in con-
tinuous time, so we apply the ideas from [8] where they used a completely different
argument for the proof, focusing on trajectories and constructing two auxiliary sys-
tems.

In section 2 we describe properly the fragmentation coagulation model starting
from [16], the limiting system and the related optimization problems. We define the
state space where all the dynamics considered lie, which is a compact set S⊂ `1, and
in the end we state the assumptions we need to obtain the convergence. In section
3 we present our main results and define the two auxiliary systems. Then we show
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how to construct an approximated optimal policy starting from an optimal action
function for the mean field limit. Moreover we consider a class of applications in
which a particular choice of the rate functions allows to reduce the limiting problem
to an optimization problem in one dimension, providing an explicit solution in a sim-
plified case and a more effective numerical scheme in general. Finally in section 4
we complete the proofs, showing that the general requirements for convergence ex-
pressed in [8] can fit to our model, with some modification. We use theorems about
semigroups and generators of Markov processes and related martingale problems.
Moreover we apply the notion of coupling of Markov chains and also a particular
Markovian coupling.

1.2 Model and assumptions

1.2.1 The space B+(L,R]

We denote, as usual, the space of measures

`1(N) :=

{
x = (x1,x2, . . .) : xk ∈ R, ∑

k
|xk|< ∞

}
. (1.1)

Denote by `1
+ the space of positive measures on N: `1

+(N) :=
{

x ∈ `1 : xk ≥ 0
}

. The
usual norm in `1 is ||x||`1 := ∑k |xk|.

Let L : N−→R be the identity function, which means L(k) = k. We define a new
norm ||x||`1(L) := ∑k L(k)|xk|, so that we can consider the subset of `1

`1(L) :=
{

x ∈ `1 : ||x||`1(L) < ∞

}
which is a Banach space equipped with this norm.

Let us denote by B(L,R) the ball of radius R in `1(L), centered in 0, and `1
+(L) :=

`1(L)∩ `1
+, B+(L,R) := B(L,R)∩ `1

+.

Lemma 1. The set B+(L,R) is relatively compact in the norm topology of `1.

Proof. By Prohorov’s compactness criterion a family of measures is relatively com-
pact in the weak topology if and only if it is tight. We have ∑k kxk < R for any
x ∈ B+(L,R). Thus for any n ∈ N and any x ∈ B+(L,R)

n ∑
k≥n

xk ≤ ∑
k≥n

kxk < ∑
k

kxk < R

which gives ∑k≥n xk ≤ R
n for any n ∈N and any x ∈ B+(L,R). So for any ε > 0 there

exists n ∈ N such that
x(N\ [0,n]) = ∑

k≥n
xk < ε
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for all x ∈ B+(L,R), which means that the tightness condition is satisfied.
By Schur’s theorem, any weakly convergent sequence in `1 is actually convergent

in the norm of `1. Therefore the set B+(L,R) is relatively compact in the topology
of `1.

We denote by B+(L,R] the closure of B+(L,R) in the norm topology of `1, which
is compact in `1, although not in the topology of `1(L). The set

S := B+(L,R]

will be the state space for the dynamics considered.
We will assume that the functions defined on S have some regularity. Let Z be

a closed convex subset of a normed space Y and f : Z −→ Y a function. Recall
that the directional derivative D f (x) : Y −→ Y of f in the point x ∈ Z is a linear
form that calculated in a vector ξ ∈ Y is defined as D f (x).ξ := limt→0

f (x+tξ )− f (x)
t .

The second order derivative D2 f (x) is a bilinear form defined as D2 f (x).[ξ ,η ] :=
D(D f (x).ξ ).η . Thus the norms of the derivatives in Y are defined as norms of linear
maps:

||D f (x)||Y := sup
||ξ ||=1

||D f (x).ξ ||Y , (1.2)

||D2 f (x)||Y := sup
||ξ ||=||η ||=1

||D2 f (x).[ξ ,η ]||Y . (1.3)

We say that f ∈C 1(Z) if the function (x,ξ ) 7→D f (x).ξ is continuous from Z×Y
to Y . Similarly, f ∈ C 2(Z) if the function (x,ξ ,η) 7→ D2 f (x).[ξ ,η ] is continuous
from Z×Y 2 to Y . These are subsets of C (Z) and Banach spaces under the norms

|| f ||C 1(Z) := sup
x∈Z
{||D f (x)||Y + || f (x)||Y} (1.4)

|| f ||C 2(Z) := sup
x∈Z

{
||D2 f (x)||Y + || f (x)||Y

}
. (1.5)

We will use these definitions for the sets Z = S, which is convex and compact,
and Y to be either `1 or `1(L).

1.2.2 System of small players

We describe a so called fragmentation-coagulation, or merging and splitting, model
in which there are N indistinguishable small players that form coalitions to resist to
the pressure exerted by a major player, following [16].

The state space is

N f in := {n = (n1,n2, . . .) : there is only a finite number of non zero entries} (1.6)
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where nk ∈N denotes the total number of coalitions of size k, so the total number of
small players is N =∑k knk and the total number of coalitions is ∑k nk. The dynamics
will be better described in the rescaled space

hN f in = {x = hn = (x1,x2, . . .)} (1.7)

where h can be taken, for instance, as the inverse of the initial number of coalitions.
We want to study the limit as h→ 0. All this hN f in spaces, as h changes, can be
viewed as subspaces of the space `1. The total number of players is conserved: this
motivates the choice of L(k) = k in the previous section, since ||x||`1(L) = hN for any
state x; we will return to this in 2.5.1.

The dynamics evolves in continuous time as a Markov chain. It is described as
follows:

• to any randomly chosen pair of coalitions of size i and j is attached a random
exponential clock of parameter hCi j(x,b) so that they merge if it rings;

• to any randomly chosen coalition of size i is attached an exponential clock of
parameter Fi j(x,b) such that, if it rings, the coalition splits into two coalitions of
size j and i− j .

Here the functions C and F may depend on the whole composition x and b is a
control parameter which lies in a compact metric space (E,d).

The minimum of all these exponential random variables is an exponential random
variable with the parameter

s = s(x,b) := ∑
i, j

nin jhCi j(x,b)+∑
i

niFi j(x,b). (1.8)

When this minimum clock rings, the system goes from the state n to either n−
ei− e j + ei+ j (two coalitions merge) or n− ei + e j + ei− j (a coalition splits). The
sequence (ei)

∞
i=1 denotes the standard basis in R∞. The first case happens if the

minimum holds for the clock of parameter hCi j(x,b), thus with probability given by
hCi j(x,b)nin j

s(x,b) . While the second case happens with probability Fi j(x,b)ni
s(x,b) .

Hence the infinitesimal generator of this Markov chain on the space N f in is

Λb,nG(n) = s(x,b)∑
i, j

hCi j(x,b)nin j

s(x,b)
[G(n− ei− e j + ei+ j)−G(n)] (1.9)

+ s(x,b)∑
i

∑
i< j

Fi j(x,b)ni

s(x,b)
[G(n− ei + e j + ei− j)−G(n)] .

Equation (1.9) can be equivalently presented as the infinitesimal generator
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Λb,hG(x) =
1
h ∑

i, j
Ci j(x,b)xix j [G(x−hei−he j +hei+ j)−G(x)] (1.10)

+
1
h ∑

i
∑
j<i

Fi j(x,b)xi [G(x−hei +he j +hei− j)−G(x)]

of the Markov chain describing the system of small players on the space hN f in ⊂
`1(N), for every G ∈ C (S).

Notation 1 Xh(t,x,b) is the state (in S) at time t of the Markov Chain given by this
generator (1.10) which is in x at t = 0, under the control parameter b given by the
major player.

The process Xh(t,x,b) describes the evolution of the coalitions of small players,
which will be also called the system with N agents.

1.2.3 Limiting system

The limiting deterministic evolution, the mean field limit, is described by the so
called Smoluchovski equation. For every x in the compact subset S ⊂ `1 the ODE
for the component i is

ẋi = fi(x,b) := ∑
j<i

C j,i− j(x,b)x jxi− j−2∑
j

Ci j(x,b)xix j (1.11)

+2 ∑
j>i

Fji(x,b)x j−∑
j<i

Fi j(x,b)xi.

Notation 2 X(t,x,b) is the flow at time t of the ODE

ẋ = f (x,b) (1.12)

starting in x at t = 0 under the control parameter b ∈ E, where f is given by (1.11).
In integral form

X(t,x,b) = x+
∫ t

0
f (X(s,x,b),b)ds. (1.13)

We view the dynamics given by a deterministic ODE as a Markov process. The
semigroup is

UtG(x) = G(X(t,x)) (1.14)

for every G ∈ C (S), and its generator is given by

ΛG(x) := ∑
i

fi(x)
∂G
∂xi

(x), (1.15)

for any G ∈ C 1(S). The first order partial differential operator defined in (1.15) has
characteristics which solve equation (1.12).
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So, for the limiting ODE given by (1.11), the corresponding infinitesimal gener-
ator given by (1.15) is

ΛbG(x) = ∑
i, j

Ci j(x,b)xix j

[
∂G

∂xi+ j
− ∂G

∂xi
− ∂G

∂x j

]
(1.16)

+∑
i

∑
j<i

Fi j(x,b)xi

[
∂G

∂xi− j
+

∂G
∂x j
− ∂G

∂xi

]
for any G ∈ C 1(S) and b ∈ E.

We can thus deduce that pointwise convergence of the generators holds. Namely,
for the generators of the Markov chains defined by (1.10) and the generator of the
deterministic limit defined by (1.16), we obtain

lim
h→0

Λb,hG(x) = ΛbG(x) (1.17)

for every G ∈ C 1(S), x ∈ S and every b ∈ E.
We show moreover the convergence in law, for any fixed parameter b ∈ E, of the

processes Xh to X in the Skorokhod space D([0,T ],S) of cadlag functions, which
is the right space where to study these processes. The convergence is then also in
probability, as the limit is deterministic, and hence a constant in the Skorokhod
space.

Proposition 1. Let all the functions Ci j and Fi j be in C 1(S). Suppose that the initial
points x(h) converge in `1 to x0, as h→ 0. Then the processes Xh(·,x(h),b) con-
verges in law on the Skorokhod space D([0,T ],S) to X(·,x0,b), as h→ 0, for any
b ∈ E; whereas the processes are defined in notations 1 and 2.

Proof. Let b ∈ E be fixed. The set C 1(S) is a dense linear subspace of C (S) and
under the assumption of smooth Ci j and Fi j it is invariant under the limiting semi-
group (Ut) defined in (1.14), since the function f defined in (1.11) turns out to be
in C 1(S). So by ([11], proposition 17.9) the set C 1(S) is a core for the generator Λb
defined in (1.16).

Then expanding G in Taylor series we have that

lim
h→0

Λb,hG = ΛbG (1.18)

uniformly for every G ∈ C 1(S). Thus the claim follows from ([11], theorem 17.25)
which characterizes the convergence of processes in D([0,T ],S).

1.2.4 Controlled systems

Here we deal with the system of small players under some control, i.e. a strategy
given by the major player. We assume that this major player focuses in finite horizon
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time nτ and can update her strategy only in discrete times

kτ k = 0,1, . . . ,n−1.

τ > 0 and n∈N are fixed, and in each time step the controller can change the control
parameter b regarding what has happened in the time interval.

The starting point of the Markov chain is x0 = x(h) ∈ hZ f in, with the control pa-
rameter b0. After the first time step the Markov chain is in the state x1 =Xh(τ,x0,b0).
Now the major player can change the parameter, so it becomes b1 = b1(x1) that may
depend on the current state of the system. She repeats the same procedure at each
time step and therefore, in the end, we get what is called a policy.

Notation 3 A policy is a sequence of decision rules

π = (π0,π1, . . . ,πn−1) (1.19)

that specify the action of the mayor player at each time step, with

πk = πk(xk) (1.20)

and
xk = Xh(τ,xk−1,πk−1). (1.21)

Let Xh
π (t,x0) denote the state of the system at time t when the controller applies

policy π , starting from the initial point x0. To shorten the notation we shall some-
times write Xh

π (t) instead of Xh
π (t,x0). It is called the controlled system of small

players.

Equation (1.21) can be also written as xk = Xh
π (kτ). At each time step kτ the

controller has an instantaneous reward B(xk,bk) and in the end she has a final reward
V0(xn). Our goal is to find a strategy that maximizes

V h
π,n(x(h)) : = E[τB(x0,π0)+ . . .+ τB(xn−1,πn−1)+V0(xn)] (1.22)

= E

[
n−1

∑
k=0

τB(Xh
π (kτ),π(Xh

π (kτ))+V0(Xh
π (nτ))

∣∣∣∣∣Xh
π (0) = x0

]

where B and V0 are given continuous functions. It is called the value for the system
with N players. The maximum over all possible policies is then the optimal value
for the system with N agents

V h
n (x(h)) := sup

π

V h
π,n(x(h)). (1.23)

We may want to find this optimum value via the usual dynamic programming
method. First of all we define the Shapley operator

S[h]V (x) := sup
b∈E

[τB(x,b)+E(V (Xh(τ,x,b)))] (1.24)



10 Alekos Cecchin and Vassili N. Kolokoltsov

and then by backward recurrence

V h
k = S[h]Vk−1, (1.25)

hence we get
V h

n = S[h]nV0. (1.26)

However this procedure might be unfeasible to calculate practically when the
number of players increases. So we will consider the optimum of the limit and then
study how close these optima are.

1.2.4.1 Controlled limiting system

We want to study the mean field limit system, given by equation (1.11), in a classical
control theory setup. Recall that (E,d) is a compact metric space, the one where the
parameter b lies.

Notation 4 We define an action function to be a piecewise Lipschitz function from
finite horizon time to E

α : [0,T ]→ E.

We note that an action function is different from a policy, because the latter de-
pends on the state of the system at each step, while the former does not. Thus in this
context we rewrite equation (1.12) where f is defined in (1.11) as

ẋ = f (x,α), (1.27)

meaning ẋ(t) = f (x(t),α(t)) for every t ≥ 0, considering hence b = α(t), i.e. the
control parameter is a function of the time.

Notation 5 X(t,x,α) is the flux of the ODE (1.27), i.e. the solution at time t that is
in x at t = 0 under the control parameter b = α = α(s). In integral form

X(t,x0,α) = x0 +
∫ t

0
f (X(s,x0,α),α(s))ds. (1.28)

We are in a finite horizon time T and now we want to maximize

vα(x) :=
∫ T

0
B(X(s,x,α),α(s))ds+V0(X(T,x,α)) (1.29)

where B and V0 are the same as in (1.22). This is the value of the limiting system.
The optimal value is then

v(x) = sup
α

vα(x). (1.30)
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Our aim is to study how and under what assumptions we have the convergence of
the optimum of the system of small players (1.23) to this optimum (1.30). In fact we
want both h and τ tend to 0. To achieve this goal we need further auxiliary systems,
to get also the convergence for every policy and every action function.

1.2.5 Stability of S

We show that the state space S := B+(L,R] is stable for all the dynamics considered.
We need some regularity for the functions involved in the model. We require that
all the functions Ci j(x,b) and Fi j(x,b) are positive and in C 2(S) in the variable x,
for any b, i.e. twice continuously differentiable on the compact subspace S ⊂ `1, in
the topology of `1. Since S is convex we can take the directional derivatives in every
direction, so we have

C := supi, j Ci j(x,b)< ∞, F = sup
i

∑
j<i

Fi j(x,b)< ∞ (1.31)

C(1) := supi, j,k

∣∣∣ ∂Ci, j
∂xk

(x,b)
∣∣∣< ∞, F(1) := sup

i,k
∑
j<i

∣∣∣∣∂Fi, j

∂xk
(x,b)

∣∣∣∣< ∞ (1.32)

C(2) := supi, j,k,l

∣∣∣ ∂ 2Ci, j
∂xk∂xl

(x,b)
∣∣∣< ∞, F(2) := sup

i,k,l
∑
j<i

∣∣∣∣ ∂ 2Fi, j

∂xk∂xl
(x,b)

∣∣∣∣< ∞.(1.33)

These constants are all finite as S is compact.
Let us recall that L is the identity, i.e. L(k) = k. Therefore, using the above equal-

ities in (1.11) we get that also f : S→ `1 is twice continuously differentiable (in
C 2(S)) as a map both in `1 and in `1(L) with the following bounds

|| f (x)||`1 ≤ 3C||x||2`1 +3F ||x||`1 (1.34)
|| f (x)||`1(L) ≤ 3(C||x||`1 +3F)||x||`1(L) (1.35)

‖D f (x)‖`1 ≤ 6C||x||`1 +3F +3[C(1)||x||`1 +F(1)]||x||`1 (1.36)
‖D f (x)‖`1(L) ≤ 8C||x||`1(L)+3F +3[2C(1)||x||`1 +F(1)]||x||`1(L) (1.37)

||D2 f (x)||`1 ≤ 6[C+F(1)+ [C(1)+F(2)]||x||`1 +C(2)||x||2`1 ] (1.38)

||D2 f (x)||`1(L) ≤ 9[C+F(1)+ [C(1)+F(2)]||x||`1(L)+C(2)||x||2`1(L)]. (1.39)

We recall now some fact about ODEs in Banach space of measures. In the Marko-
vian dynamics of the system of small players every state represents the number of
coalitions of different sizes, which is of course positive. Hence we are interested in
an evolution f : S −→ `1 for the dynamic (1.12) ẋ = f (x) that preserves positivity,
i.e. such that for any initial point x ∈ `1

+ the solution X(t,x) belongs to `1
+ for any

t ≥ 0. We say that f must be conditionally positive, in the following sense:
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Definition 1. A function f : `1 −→ `1 is said to be conditionally positive if for any
x ∈ `1

+ with xk = 0 one has fk(x)≥ 0.

Further, we need the following definitions.

Definition 2. A function f : `1
+ −→ `1 is called L-subcritical if

∑
k

L(k) fk(x)≤ 0. (1.40)

As a motivation, we observe that d
dt ||x||`1(L) ≤ 0 if f is L-subcritical and ẋ = f (x).

Definition 3. A function f : `1
+ −→ `1 is said to satisfy the Lyapunov condition if

∑
k

L(k) fk(x)≤ a∑
k

L(k)xk +b (1.41)

for some constant a and b, for all x ∈ `1
+.

The main result concerning the dynamics in `1 is the following lemma.

Lemma 2. Assume that the function f is conditionally positive, satisfies the Lya-
punov condition and is Lypschitz continuous in the norm of `1(L) on any bounded
set of `1(L)+. Then for any x ∈ `1(L)+ the Cauchy problem (1.12) has a unique
global (defined for all times) solution X(t,x) in `1

+(L). Moreover

X(t,x) ∈ B+(L,eat(||x||`1(L)+bt)). (1.42)

In particular if f is L-subcritical then any B+(L,R) is invariant.

Proof. By local Lipschitz continuity and conditional positivity, evolution (1.12) is
locally well-posed and preserves positivity. Moreover, by the Lyapunov condition,

(L,X(t,x))≤ (L,x)+
∫ t

0
[a(L,X(s,x))+b]ds

where (L,x)=∑k L(k)xk is the duality between functions and measures. So by Gron-
wall’s lemma and the preservation of positivity

0≤ (L,X(t,x))≤ eat [(L,x)+bt],

implying that the solution can be extended to all times with required bounds.

We have found that, if the assumptions of the lemma are satisfied, the set
B+(L,x0] is invariant under an L-subcritical evolution f and the ODE has a unique
global solution, starting from x0.

Let us check that the assumptions of lemma 2 are satisfied for f defined in (1.11).
The function f is conditionally positive because its domain is S, which is a subset of
`1
+, and the functions Ci j(x,b) and Fi j(x,b) are positive. Further, if we consider the
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function G ∈ C 1(S) defined by G(x) = ||x||`1(L) = ∑k kxk and apply the generator
(1.16) to this function then we have ∑k k fk(x) = 0, since the derivatives of G are
∂G
∂xk

(x) = k. This implies that f is L-subcritical.
Considering equation (1.37) and thanks to the boundedness of S in `1(L) we

obtain that f is Lipschitz continuous as a map in `1(L). So all the assumptions of
lemma 2 are satisfied, showing the well posedness of the problem and the invariance
of S. We would like this set to be invariant also for the system of small players.

1.2.5.1 State space for the small players

For any h, Xh(t,x) is a continuous-time Markov chains on hN f in ∩ `1
+. Let us say

that Xh(t,x) are L-non-increasing, if any jump of Xh(t,x) cannot increase L. In this
case a trajectory Xh(t,x) stays forever in B+(L,R) whenever the initial point x ∈
B+(L,R). Moreover Xh is L-subcritical in the sense that its generator Λh,b satisfies
the inequality Λh,b(L)≤ 0.

The Markov chains Xh(t,x(h)) are L-non increasing and have bounded genera-
tors. In fact the state space of the coalitions of small players is actually finite for any
fixed h. Indeed we recall that if Xh(t,x) is in the state x then xk is h times the number
of coalitions of size k. The total number of small players is fixed N = N(h) for any
h, so xk = 0 for any k≥ N and xk ≤ N/h for any k≤ N, meaning that the state space
is finite.

The total number of small players N is of course constant. So the norm in `1(L)
of the states x of the Markov chain Xh(t) is conserved:

||x||`1(L) =
N

∑
k=1

kxk = h
N

∑
k=1

knk = hN(h). (1.43)

Hence if the initial point x(h) is in S = B+(L,R] then any state is in S, i.e. the set
B+(L,R] is invariant for the dynamics of Xh.

Notation 6 S(h) is the finite state space of the Markov chain Xh, the system of
N = N(h) small players. It is a subset of the compact B+(L,R] in `1 and a subset of
RN and of the set hN f in. Denote by M(h) the number of elements of S(h)

S(h) := hN f in∩B+(L,R].

So we can define S := B+(L,R] for a suitable R such that this set contains all the
initial data x(h) and x0. Such an R exists because we will consider limh→0 x(h) = x0
and then the sequence is bounded. S is the compact set in `1 invariant for all the
dynamics considered. Thanks to (1.43) we have

N(h)≤ R
h

(1.44)
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for any h. Further limh→0 M(h) = limh→0 N(h) = +∞ and the finite spaces S(h) are
decreasing, i.e. if h > l then S(h)⊂ S(l), and

⋃
h>0 S(h)⊆ S. Moreover

S(h)⊂ S⊂ `1(L)⊂ `1 ⊂ `2. (1.45)

1.2.6 Assumptions in the model

Let us summarize the assumptions we make on our model. Recall that in the system
of N small players the controller acts at time steps kτ for k = 0,1, . . . ,n−1.

• (H1) S=B+(L,R] is the state space of all the dynamics considered, and the initial
states lie in S;

• (H2) The functions Ci j(x,b) and Fi j(x,b) are positive and in C 2(S) in the variable
x, for any b ∈ E, and Lipschitz continuous in the variable b, for any x ∈ S;

• (H3) The rewards B(x,b) and V0(x) are Lipschitz continuous in x in the `2-norm,
uniformly in b, and B is bounded;

• (H4) The time step τ = τ(h) depends on h, as well as N = N(h) does, and

lim
h→0

τ(h) = lim
h→0

τ(h)
√

N(h) = 0;

• (H5) The horizon T is fixed and the number of steps is

n(h) :=
⌊

T
τ(h)

⌋
(1.46)

for any h, which tends to infinity, as h tends to 0;
• (H6) The rescaling parameter h of the model is such that

lim
h→0

h(N(h))2 = lim
h→0

τ(h)(N(h))2 = 0. (1.47)

Equivalently, we can think of studying the limit as N tends to infinity. So the pa-
rameter h = h(N) has to satisfy the latter conditions and it represents the rescaling
parameter for the system of N players.

1.3 Mean field convergence

In this section we present our main results. We follow the ideas in [8], hence we
firstly introduce the two auxiliary systems.



1 Evolutionary game of coalition building under external pressure 15

1.3.0.1 First auxiliary system

This is a system with N agents controlled by an action function borrowed from the
mean field limit. More precisely, let α be an action function that specifies the action
to be taken at time t. Although α has been defined for the limiting system, it can
also be used for the system with N players. In this case, the action function α can
be seen as a policy that does not depend on the state of the system.

At step k, the controller applies action

αk := α(kτ),

so (1.20) gives a policy (α0, . . . ,αn−1) as in (1.19), but independent of the state of
the system.

By abuse of notation, we denote by Xh
α(t) as in (3) the state of the system at time

t when applying the policy derived from the action function α as explained above.
In what follows policies will always be denoted by π and action functions by α .
Here (1.21) becomes

xk = Xh(τ,xk−1,αk−1) = Xh
α(kτ),

starting from initial point x0 with control parameter α0 = α(0).
The value for this system, similarly to (1.22), is defined by

V h
α,n(x0) : = E[τB(x0,α0)+ . . .+ τB(xn−1,αn−1)+V0(xn)] (1.48)

= E

[
n−1

∑
k=0

τB(Xh
α(kτ),α(kτ))+V0(Xh

α(nτ))

∣∣∣∣∣Xh
α(0) = x0

]
.

1.3.0.2 Second auxiliary system

The method of proof uses a second auxiliary system in which trajectories are con-
sidered. This is a limiting system controlled by an action function derived from the
policy of the original system with N agents.

Consider the system with N players under policy π . The stochastic process Xh
π =

Xh
π,n(h) is defined on some probability space Ω . To every ω ∈ Ω there corresponds

a trajectory Xh
π (ω), and for every ω ∈ Ω we define the piecewise constant action

function Ah
π(ω), as explained in the following

Notation 7
Ah

π(ω) : [0,T ]→ E

is an action function such that

• this random function is constant on each interval [kτ,(k + 1)τ[ for any k =
0,1, . . . ,n−1;
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• Ah
π(ω)(kτ) := πk = πk(Xh

π (kτ)) is the action taken by the major player of the
system with N agents at time slot kτ , under policy π .

Recall from notation 5 that for any x0 ∈ S ⊂ `1(N) and any action function α ,
X(x0,α) is the solution of the ODE (1.27). For every ω , X(t,x0,Ah

π(ω)) is the solu-
tion of the limiting system with action function Ah

π(ω), as in (1.28), i.e.

X(t,x0,Ah
π(ω)) = x0 +

∫ t

0
f (X(s,x0,Ah

π(ω)),Ah
π(ω)(s))ds. (1.49)

The value function for this system is as in (1.29).
When ω is fixed, X(t,x0,Ah

π(ω)) is a continuous time deterministic process cor-
responding to one trajectory Xh

π (ω). When considering all possible realizations of
Xh

π , X(t,x0,Ah
π) is a random, continuous time function coupled to Xh

π , i.e. a stochas-
tic process. Its randomness comes only from the action term Ah

π , in the ODE (1.27).
In the following we omit the dependence on ω in our writing. Ah

π and Xh
π will always

designate the processes corresponding to the same ω .

1.3.1 Main results

The main result establishes the convergence of the optimization problem for the
system with N players to the optimization problem for the mean field limit, through
their value functions.

Theorem 1. Under assumptions (H1)-(H6), if limh→0 x(h) = x0 almost surely, re-
spectively in probability, then

lim
h→0

V h(x(h)) = v(x0) (1.50)

almost surely, respectively in probability, where V h and v are the optimal values
defined in (1.23) and (1.30).

The second result states that an optimal action function for the mean field limit
provides an asymptotically optimal strategy for the system with N agents. Let us
denote by (X̂h

α(t))t≥0 the continuous time process which is the affine interpolation
of Xh

α(t) (the first auxiliary system) in the points kτ and similarly by X̂h
π (t) the affine

interpolation of Xh
π (t) under policy π .

Theorem 2. Under assumptions (H1)-(H6), let α be a piecewise Lipschitz continu-
ous action function on [0,T ], of Lipschitz constant Kα , and with at most p disconti-
nuity points. Then there exist functions J, I′0 and B′ satisfying

lim
h→0

I′0(h,α) = lim
h→0

J(h,T ) = 0, lim
h→0
δ→0

B′(h,δ ) = 0
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such that for all ε > 0

P
{

sup
0<t<T

∥∥∥X̂h
α(t)−X(t,x0,α)

∥∥∥> [∥∥∥Xh(0)− x0

∥∥∥+ I′0(h,α)T + ε

]
eL1T

}
≤ J(h,T )

ε2

(1.51)
and ∣∣∣V h

α (X
h(0))− vα(x0)

∣∣∣≤ B′
(

h,
∥∥∥Xh(0)− x0

∥∥∥) . (1.52)

Inequality (1.52) implies also that if

lim
h→0

Xh(0) = x0 (1.53)

almost surely, respectively in probability, then

lim
h→0

V h
α (X

h(0)) = vα(x0) (1.54)

almost surely, respectively in probability.
The following corollary combines Theorems 1 and 2. It states that an optimal

action function for the limiting system is asymptotically optimal for the system of
small players.

Corollary 1. If α∗ is an optimal action function for the limiting system and if
limh→0 Xh(0) = x0 almost surely, respectively in probability, then

lim
h→0

∣∣∣V h
α∗(X

h(0))−V h(Xh(0))
∣∣∣= 0 (1.55)

almost surely, respectively in probability.

Proof. The assumption says that there exists an action function α∗ that maximizes
v, i.e. v(x0) = vα∗(x0) = maxα vα(x0). Hence we have∣∣∣V h

α∗(X
h(0))−V h(Xh(0))

∣∣∣≤ ∣∣∣V h
α∗(X

h(0))− vα∗(x0)
∣∣∣+ ∣∣∣V h(Xh(0))− v(x0)

∣∣∣ .
So, if (1.53) holds, the first modulus goes to 0 by (1.54) and the second by (1.50).
Therefore (1.55) is given combining Theorems 1 and 2.

1.3.1.1 Auxiliary results

In order to prove the main theorems we need two auxiliary results.

Theorem 3. Under assumptions (H1)-(H6), there exist functions I0 and J satisfying
limh→0 I0(h,α) = limh→0 J(h,T ) = 0 such that for any ε > 0, h > 0 and any policy
π
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P
{

sup
0<t<T

∥∥∥X̂h
π (t)−X(t,x0,Ah

π)
∥∥∥> [∥∥∥Xh(0)− x0

∥∥∥+ I0(h)T + ε

]
eL1T

}
≤ J(h,T )

ε2 .

(1.56)

If (1.53) holds this theorem shows the convergence in probability of the con-
trolled system with N agents, with explicit bounds.

The second statement deals with the convergence of the value for the controlled
system of small players to the value of the second auxiliary system. Let π be a policy
and Ah

π be the sequence of actions corresponding to a trajectory of Xh
π , as in notation

7. Equation (1.29) defines the value for the deterministic limit, whereas α is an ac-
tion function. When applying the random action function Ah

π , this defines a random
variable vAh

π
(x0). A consequence of Theorem 3 is the convergence of V h

π (X
h(0)) to

the expectation of this random variable.

Theorem 4. Let Ah
π be the random action function associated with Xh

π as in notation
7. Under assumptions (H1)-(H6), there exist a function B satisfying

lim
h→0
δ→0

B(h,δ ) = 0 (1.57)

such that ∣∣∣V h
π (X

h(0))−E[vAh
π
(x0)]

∣∣∣≤ B(h,
∥∥∥Xh(0)− x0

∥∥∥). (1.58)

This implies that if (1.53) holds almost surely, respectively in probability, then

lim
h→0

∣∣∣V h
π (X

h(0))−E[vAh
π
(x0)]

∣∣∣= 0 (1.59)

almost surely, respectively in probability.
The proofs of the main results use the two auxiliary systems. The first auxiliary

system provides a strategy for the system with N agents derived from an action
function of the mean field limit. It can not do better than the optimal value of the
system of small players and it is close to the optimal value of the mean field limit.
Therefore the optimal value for the system with N players is lower bounded by the
optimal value for the mean field limit.

The second auxiliary system is used in the opposite direction: it shows that for
large N the two optimal values are the same.

1.3.2 Requirements for convergence

Let us denote by ||x|| the `2-norm of x and define the drift of the model as

Fh(x,b) := E(Xh(τ,x,b)− x). (1.60)
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Due to Theorems 2-6 in [8], in order to prove Theorems 1-4 it is sufficient to show
that

• (A1) There exist some non random functions I1(h) and I2(h) such that

lim
h→0

I1(h) = lim
h→0

I2(h) = 0

and that for all x and all policies π the number coalitions ∆ h
π(k) that perform a

transition between time step kτ and (k+1)τ satisfies

E(∆ h
π(k)|Xh

π (kτ) = x) ≤ 1
h

I1(h) (1.61)

E(∆ h
π(k)

2|Xh
π (kτ) = x) ≤ 1

h2 τI2(h); (1.62)

• (A2) There exist a function I0(h) such that limh→0 I0(h) = 0 and∥∥∥∥Fh(x,b)
τ(h)

− f (x,b)
∥∥∥∥≤ I0(h) (1.63)

for every x ∈ S and b ∈ E where the function f is the one in (1.11), and moreover
f is defined on S×E and there exists a constant L2 such that

| f (x,b)| ≤ L2; (1.64)

• (A3) There exist constants L1, K and KB such that for all x, y ∈ S and a, b ∈ E

||Fh(x,b)−Fh(y,b)|| ≤ L1||x− y||I(h) (1.65)
|| f (x,b)− f (y,a)|| ≤ K(||x− y||+d(a,b)) (1.66)
||B(x,b)−B(y,b)|| ≤ KB||x− y|| (1.67)
||V0(x)−V0(y)|| ≤ KB||x− y|| (1.68)

and the reward is bounded:

sup
x∈S
b∈E

max{|B(x,b)|, |V0(x,b)|}=: ||B||∞. (1.69)

We will show in the next section that if our assumptions (H1)-(H3) are satisfied
then (A1)-(A3) hold.

Let us now fix the functions appearing in (A1), (A2) and (A3):
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K := 6CR+3F +3R[C(1)R+F(1)], (1.70)
L2 := 3CR2 +3FR, (1.71)

I0(h) :=
√

N(h)
τ

2
(R1 +hR2), (1.72)

I1(h) := τ(CR2 +F), (1.73)
I2(h) := (CR2 +F)[τ(CR2 +F)+h], (1.74)

where

R1 := 3(CR2 +FR)(6CR+3F +3C(1)R2 +F(1)R),

R2 := 54(CR2 +FR)(C+F(1)+C(1)R+F(1)R+C(2)R2).

Clearly limh→0 I0(h) = limh→0 I1(h) = limh→0 I2(h) = 0 if (H4) holds. L1 actually
depends on h

L1 = L1(h) := KeM2
√

N(h)τ , (1.75)

where M2 := 3(C(1)R2+2CR+F(1)R+F). Hence L1 is tends to the constant K by
(H4), as h tends to 0.

Let us define the functions I′0,J,B,B
′ appearing in the statements of Theorems

2-4 by the following equations

I′0(h,α) := I0(h)+ τKe(K−L1)T ·
[

Kα

2
+2
(

1+min
{

1
τ
, p
})
||α||∞

]
, (1.76)

J(h,T ) := 8T
{

L2
1
[
I2(h)τ2 + I1(h)2(T + τ)

]
+N(h)2 [2I2(h)+ τL2

2
]}

, (1.77)

B(h,δ ) := τ||B||∞ +KB
√

2I1(h)+KB(δ + I0(h)T )
(

eL1T +
eL1T −1

L1

)
(1.78)

+
3

2
1
3

[
eL1T +

eL1T −1+ τ

2
L1

] 2
3

·K
2
3

B ||B||
1
3
∞J(h,T )

1
3 (T +1)

2
3 (1.79)

and B′(h,δ ) has the same expression as B(h,δ ) replacing I0(h) by I′0(h,α). From
(H4) and (H6) follow that limh→0 J(h,T )= limh→0 I′0(h,α)= 0 and limh→0

δ→0
B′(h,δ )=

limh→0
δ→0

B(h,δ ) = 0.

1.3.3 Constructing an optimal policy

By means of corollary 1, an optimal action function for the mean field limit is
asymptotically optimal for the system of small players. This provides a way for
constructing an asymptotically optimal policy.

We denote by u(x, t) the optimal cost over horizon [t,T ] for the limiting system.
Under our hypothesis, the following proposition holds.
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Proposition 2. The value function u(x, t) is the unique, bounded and uniformly con-
tinuous, viscosity solution in S× [0,T ]⊂ `2× [0,T ] of the Hamilton-Jacobi-Bellman
equation

−∂u(x, t)
∂ t

−max
b∈E
{∇u(x, t) · f (x,b)+B(x,b)}= 0 (1.80)

which satisfies the terminal condition u(x,T ) =V0(x).

Let us recall that the definition of viscosity solution in a Hilbert space, as `2,
does not differ from the usual one. Further, under our assumptions, the Hamiltonian
defined as H(x, p) := maxb∈E{p · f (x,b)+B(x,b)} for any (x, p) ∈ S× `2 is such
that

|H(x, p)−H(y, p)| ≤C||x− y||(1+ ||p||)
|H(x, p)−H(x,q)| ≤C||p−q||,

where C is a constant. Therefore existence and uniqueness of bounded and uni-
formly continuous viscosity solutions to (1.80) are implied by Theorem 5.1 in [6].

We state the algorithm presented in [8] for constructing an asymptotically opti-
mal policy for the system of small players Xh via an optimal action function for the
mean field limit X :

• Let Xh(0) be the initial condition of the limiting system. Solve the Hamilton-
Jacobi-Bellman equation (1.80) on [0,τn(h)]. Assume this provides an optimal
control function α∗;

• Construct a policy π for the system of small players: the action to be taken under
state Xh(kτ) at step k is

πk(Xh(kτ)) := α∗(kτ).

The asymptotic optimality of the related value is ensured by corollary 1. The
policy π constructed above is static in the sense that it does not depend on the state
Xh(kτ) but only on the initial state Xh(0). The deterministic estimation of Xh(kτ) is
provided by the differential equation.

The algorithm described above uses an optimal action function for the limiting
system which may not exist, as we observed above. A sufficient condition for its
existence is that the set f (x,E)×B(x,E) is convex for all x ∈ S; a proof of this fact
can be found in [1].

However the existence of an optimal action function is actually not necessary
in the algorithm described above. Indeed, if there is no optimal control of the HJB
equation (1.80), one can replace the optimal α∗ used in the algorithm by an action
function which is h-optimal. This still provides an asymptotically optimal policy.

1.3.4 Example

We show here that in a class of applications the limiting problem can be reduced to
an optimization problem in one dimension. This provides a computationally much
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more effective scheme in order to obtain an asymptotically optimal policy for the
system of small players, in view of the algorithm presented above.

Firstly, we study a particular case in which the mean field limit admits an explicit
solution. So let us consider E = [0,1] and a particular shape of the functions Ci j and
Fi j, in which the there is no dependence on x:

Ci j(x,b) = b (1.81)

Fi j(x,b) =
1−b
i−1

. (1.82)

In particular if b is 1 then only merging is possible. While if it is 0 only splitting is
possible.

Let m(x) := ∑i xi be the norm of x ∈ `1. With these rates the limiting evolution f
in (1.11) can be studied considering only the dynamics of the norm. Evaluating the
limiting generator (1.16) on G = m we obtain

∑
i

fi(x,b) =−bm2 +(1−b)m. (1.83)

Hence the evolution of m is described by{
ṁ =−bm2 +(1−b)m
m(0) = m0,

(1.84)

which is in fact an ODE on R+.
If b is constant then the explicit solution to (1.84) is

m(t,m0,b) =
m0(1−b)e(1−b)t

1−b−m0b+m0e(1−b)t
. (1.85)

if b 6= 1. In particular, if b = 0, m(t,m0,0) = m0et . While if b = 1

m(t,m0,1) =
m0

1+ tm0
. (1.86)

Observe that m(t,m0,b) is a continuous and strictly decreasing function of b∈ [0,1],
for any value of 0 < t ≤ T and m0 > 0.

We assume that there is no instantaneous reward and that the final reward V0 =
V0(m) is a strictly concave function of m which has a unique maximum in m∗. The
value function V in this case can be computed explicitely, that is

V (t,m) =


V0(meT−t) if m < m∗e−(T−t)

V0(m∗) if m∗e−(T−t) ≤ m≤ m∗
1−(T−t)m∗

V0

(
m

1+(T−t)m

)
if m > m∗

1−(T−t)m∗ .

(1.87)
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If m∗e−(T−t) ≤m0 ≤ m∗
1−(T−t)m∗ denote by b∗(T,m0) the unique value of b∈ [0,1]

such that m(T,m0,b) = m∗. Therefore, if m(0) = m0, an optimal action function for
the mean field limiting problem is to choose the constant value

α
∗(t,m0) = α

∗(m0) :=


1 if m0 < m∗e−(T−t)

b∗(T,m0) if m∗e−(T−t) ≤ m0 ≤ m∗
1−(T−t)m∗

0 if m0 >
m∗

1−(T−t)m∗ .

(1.88)

This example can be generalized to the case in which the rates Ci j and Fi j depend
also on the norm of x. Namely, let

Ci j(x,b) = b fC(m(x)) (1.89)

Fi j(x,b) =
1−b
i−1

fB(m(x)), (1.90)

where fC and fB are some Lipschitz continuous and non-negative functions. The
dynamics (1.84) for m becomes{

ṁ =−b fC(m)m2 +(1−b) fB(m)m
m(0) = m0.

(1.91)

Also in this case, the mean field limiting problem reduces to an optimization
problem in one dimension. Thus there are numerical schemes which provide an
1
N -optimal action function in feedback form (see e.g. [1]). These are much more ef-
ficient than trying to solve the Bellman equation (1.26). In fact the prelimit problem
is allowed to be tackled when N is lower than a few tens: see [20].

1.4 Proofs of convergence

In this section we show that (A1)-(A3) hold in our fragmentation-coagulation
model. So (H1)-(H6) hold and recall that the compact state space S ⊂ `1 is stable
for all the dynamics considered.

1.4.1 Lipschitz continuity of the limit

We verify that (1.66) and (1.64) are satisfied for the function f in (1.11), if (H2)
holds. We actually do not need f to be in C 2(S), but only in C 1(S). We use the fact
that

||x||= ||x||`2 ≤ ||x||`1 ≤ ||x||`1(L) ≤ R (1.92)

for any x ∈ S. So equation (1.34) gives
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|| f (x)|| ≤ 3CR2 +3FR

for all x ∈ S, which is the assumption (1.64) with bound

L2 := 3CR2 +3FR. (1.93)

By (1.92) and its definition (1.2) we get also

||D f (x)||`2 ≤ ||D f (x)||`1 ∀x ∈ S

which, together with equation (1.36), yields

||D f (x)||`2 ≤ 6CR+3F +3R[C(1)R+F(1)]. (1.94)

Applying then the mean value theorem in the convex space S, for every x and y
in S there exist a point z in the segment [x,y] such that

f (y)− f (x) = D f (z).(y− x).

Thus taking the `2-norm and using the fact that D f is a bounded linear map we get

|| f (y)− f (x)|| ≤ ||D f (z)||`2 ||y− x||

for all x and y in S. According to (1.94) we find that the limiting function is Lipschitz
continuous in x, for the `2-norm with

K = 6CR+3F +3R[C(1)R+F(1)] (1.95)

as a Lipschitz constant.
Clearly (H3) implies (1.67), (1.68) and (1.69).

1.4.2 Convergence of the drift

Here we prove (1.63). Recall that the drift of the model is

Fh(x,b) := E[Xh(τ,x,b)− x].

The semigroup Uh
t of the Markov process Xh is defined by

Uh
t G(x,b) := E[G(Xh(t,x,b))]

for any G ∈ C (S,R) and t ≥ 0. U0 is the identity and Ut satisfies the Kolmogorov
differential equation

∂

∂ t
Uh

t G(x,b) = Λh,bUh
t G(x,b) =Uh

t Λh,bG(x,b), (1.96)
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where Λh,b is the infinitesimal generator defined in (1.10).
We apply Uh

t to the projection on the k-th coordinate Gk. This function is in
C (S,R) and

Fh
k (x, t) := Gk

(
E[Xh(τ,x,b)− x]

)
= EGk(Xh(τ,x,b))− xk =Uh

τ Gk(x,b)−Gk(x).
(1.97)

Let us denote uk(t,x,b) := Uh
t Gk(x,b). The Taylor formula applied to uk in the

variable t gives

uk(τ,x,b) = uk(0,x,b)+ τ
∂uk

∂ t
(0,x,b)+

τ2

2
∂ 2uk

∂ t2 (s,x,b) (1.98)

for a fixed s ∈]0,τ[ and for every x and b. We have

uk(0,x,b) = Gk(x) = xk (1.99)

and according to (1.96)

∂uk

∂ t
(0,x,b) = Λh,buk(0,x,b) = Λh,bGk(x) (1.100)

for every x and b.
The generator (1.10) calculated on the projection, using Gk(ei) = δik, gives

Λb,hGk(x) =
1
h ∑

i, j
Ci j(x,b)xix j [Gk(x−hei−he j +hei+ j)−Gk(x)]

+
1
h ∑

i
∑
i< j

Fi j(x,b)xi [Gk(x−hei +he j +hei− j)−Gk(x)]

= ∑
i, j

Ci j(x,b)xix j
[
δi+ j,k−δik−δ jk

]
+∑

i
∑
i< j

Fi j(x,b)xi
[
δ jk +δi− j,k−δik

]
= ∑

i<k
Ci,k−i(x,b)xixk−i−∑

j
Ck j(x,b)xkx j−∑

i
Cik(x,b)xixk

+∑
i>k

Fik(x,b)xi +∑
i>k

Fi,i−k(x,b)xi−∑
j<k

Fk j(x,b)xk

and, observing that Ci j =C ji and Fi j = Fi,i− j, the latter expression is exactly fk(x,b)
defined in (1.11), whence

Λb,hGk(x) = fk(x,b) (1.101)

for every x and b.
We need also an estimate of the latter term in (1.98). Equation (1.96) yields

∂ 2uk

∂ t2 (s,x,b)
∂

∂ t
Uh

s Λb,hGk(x) =Uh
s Λb,hΛb,hGk(x) =Uh

s Λb,h fk(x,b).
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We use then the fact that the semigroup Uh
s is, for any s, a contraction in the space

C (S,R) equipped with the sup-norm ||G||∞ := supx∈S |G(x)|. Thus the latter term in
(1.98) is bounded by∣∣∣∣∂ 2uk

∂ t2 (s,x,b)
∣∣∣∣≤ ∥∥∥Uh

s Λb,h fk

∥∥∥
∞

≤
∥∥Λb,h fk

∥∥
∞

(1.102)

for any x ∈ S, b ∈ E and s > 0.
The estimate for the norm of Λb,h fk is found applying again the Taylor formula

to fk:

Λb,h fk(x) =
1
h ∑

i, j
Ci j(x,b)xix j [ fk(x−hei−he j +hei+ j)− fk(x)]

+
1
h ∑

i
∑
j<i

Fi j(x,b)xi [ fk(x−hei +he j +hei− j)− fk(x)]

= ∑
i, j

Ci j(x,b)xix j ∑
l

∂ fk

δxl
(x)
(
δi+ j,l−δil−δ jl

)
+h∑

i, j
Ci j(x,b)xix j ∑

l
∑
m

∂

δxl

∂

δxm
fk(y)

(
δi+ j,l−δil−δ jl

)
(δi+ j,m−δim−δ jm)

+∑
i

∑
j<i

Fi j(x,b)xi ∑
l

∂ fk

δxl
(x)
(
δ jl +δi− j,l−δil

)
+h∑

i
∑
j<i

Fi j(x,b)xi ∑
l

∑
m

∂

δxl

∂

δxm
fk(z)

(
δ jl +δi− j,l−δil

)
(δ jm +δi− j,m−δim)

for certain fixed points y and z in S. This gives, using the estimates (1.31), (1.36)
and (1.38) and the definitions of the norms of the derivatives D f and D2 f ,∣∣Λb,h fk(x)

∣∣≤C||x||2`1

(
3||D f (x)||`1 +9h||D2 f (y)||`1

)
+F ||x||`1

(
3||D f (x)||`1 +9h||D2 f (z)||`1

)
≤C||x||2`1 [3(6C||x||`1 +3F +3[C(1)||x||`1 +F(1)]||x||`1)

+54h
(
C+F(1)+ [C(1)+F(2)]||y||`1 +C(2)||y||2`1

)
]

+F ||x||`1 [3(6C||x||`1 +3F +3[C(1)||x||`1 +F(1)]||x||`1)

+54h
(
C+F(1)+ [C(1)+F(2)]||z||`1 +C(2)||z||2`1

)
]

≤ (CR2 +FR)[3(6CR+3F +3C(1)R2 +F(1)R)

+54h(C+F(1)+C(1)R+F(1)R+C(2)R2)]

for every x ∈ S and b ∈ E and k = 1, . . . ,N(h).
Therefore ∥∥Λb,h fk

∥∥
∞
≤ R1 +hR2 (1.103)
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for every x ∈ S and b ∈ E and k = 1, . . . ,N(h), where R1 := 3(CR2 +FR)(6CR+
3F + 3C(1)R2 + F(1)R) and R2 := 54(CR2 + FR)(C + F(1) +C(1)R + F(1)R +
C(2)R2).

Equations (1.97) and (1.98), by means of (1.99), (1.100) and (1.101), lead to

Fh
k (x,b)− τ fk(x,b) =

τ2

2
∂ 2uk

∂ t2 (s,x,b)

and this applying (1.102) and (1.103) yields∣∣∣Fh
k (x,b)− τ fk(x,b)

∣∣∣≤ τ2

2
(R1 +hR2)

for any k = 1, . . . ,N(h). Considering the `2-norm we have hence∥∥∥∥Fh(x,b)
τ

− f (x,b)
∥∥∥∥≤√N(h)

τ

2
(R1 +hR2)

which is (1.63), whereas I0 is given by (1.72).

1.4.3 Lipschitz continuity of the drift

Here we verify that the drift Fh of the model is Lipschitz continuous and we also
find a constant for which it is bounded in `2. We use two tools. The first is the fact
that the process

MG(t) := G(X(t))−G(X(0))−
∫ t

0
Λ(X(s))ds (1.104)

are martingales with respect to the filtration generated by the Markov process
X(t)t≥0, for every G in the domain of its generator. While the second tool is the
notion of coupling for Markov chains.

We want to study the behavior of the two Markov chains Xh(t,x,b) and Xh(t,y,b)
for x 6= y and link them in some sense in the product space. So we could define a
coupling of these stochastic processes in terms of their distributions in the space of
paths D([0,T ],S), the space of cadlag functions, for fixed initial points. However,
for given marginal Markov processes, the resulting coupled process may not be
Markovian. So we introduce the following fundamental definition, which can be
found for instance in [3].

Definition 4. Given two Markov processes with semigroups U j(t) and generators
Λ j, or transition probabilities Pj(t,x1, ·), on (E j,E j), j = 1,2, a Markovian coupling
is a Markov process with semigroup Ũ(t) and generator Λ̃ , or transition probability
P̃(t;x1,x2, ·), on the product space (E1×E2,E1⊗E2) having the marginality:

•
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P̃(t;x1,x2,A1×E2) = P1(t,x1,A1) ∀t ≥ 0,x1 ∈ E1,A1 ∈ E1,

P̃(t;x1,x2,E1×A2) = P2(t,x2,A2) ∀t ≥ 0,x2 ∈ E2,A2 ∈ E2.

Or equivalently

Ũ(t)G(x1,x2) =U1(t)G(x1), ∀t ≥ 0,x1 ∈ E1,G ∈ B(E1),

Ũ(t)G(x1,x2) =U2(t)G(x2), ∀t ≥ 0,x2 ∈ E2,G ∈ B(E2),

where B(E ) is the set of all bounded E -measurable functions. Here on the left
hand side G is regarded as a bivariate function, although it depends on only one
variable.

•
Λ̃G(x1,x2) = G(x1) ∀x1 ∈ E1,G ∈ B(E1),

Λ̃G(x1,x2) = G(x2) ∀x2 ∈ E2,G ∈ B(E2),

where G on the left hand side is regarded as above.

The main result concerning coupling of Markov chains, whose proof can be
found in [3], is that the two parts given in the definition are equivalent under certain
conditions, for instance if the two Markov chains take value in a finite state space. A
Markovian coupling always exists: the simplest is the independent coupling. Con-
sider a finite set E = E1 = E2, in the notations of the above definition. The generator
of the independent coupling is defines by

Λ̃G(x1,x2) := Λ1G(·,x2)(x1)+Λ1G(x1, ·)(x2)

for any G ∈ C (E2).
Hence, for fixed h and b (which will be omitted in the following writing) we

consider any coupling operator Λ̃h of the Markov chain Xh(t) and itself, which gives
the semigroup Ũh

t . The coupled process will be called (Xh(t),Y h(t)), although we
consider the same process, to avoid misunderstandings. Then by (1.104) the process

Mg(t) := g(Xh(t),Y h(t))−g(Xh(0),Y h(0))−
∫ t

0
Λ̃g(Xh(s),Y h(s))ds (1.105)

is a martingale for any g ∈ C (S(h)×S(h)).
We let

Ex[G(Xh(t))] := E[G(Xh(t))|X(0) = x] = E[G(Xh(t,x))] =Uh
t G(x)

and

Ẽx,y[g(Xh(t),Y h(t))] := Ũh
t g(x,y) = Ẽ

[
g(Xh(t),Y h(t))|(Xh(0),Y h(0)) = (x,y)

]
for any x and y in S(h). Therefore the martingale Mg defined in (1.105) leads to
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Ẽx,y[g(Xh(t),Y h(t))]−g(x,y) = Ẽx,y
[∫ t

0
Λ̃g(Xh(s),Y h(s))ds

]
(1.106)

for any t ≥ 0 and g ∈ C (S(h)×S(h)).
Considering gk(x,y) := xk−yk and Gk(x) = x, by means of definition 4 and iden-

tity (1.101), we have

Λ̃gk(x,y) = ΛGk(x)−ΛGk(y) = fk(x)− fk(y)

and

Ẽx,y[gk(Xh(τ),Y h(τ))]−gk(x,y)=Ex[Xh
k (τ))]−x−Ey[Xh

k (τ))]+y=Fh
k (x)−Fh

k (y)

by definition (1.60) of the drift. Hence equation (1.106) yields

Fh(x)−Fh(y) = Ẽx,y
[∫

τ

0

(
f (Xh(s))− f (Y h(s))

)
ds
]

which, taking the `2-norm and applying Fubini’s theorem and the Lipschitz conti-
nuity of f (1.66), becomes

||Fh(x)−Fh(y)|| ≤ K
∫

τ

0
Ẽx,y

∥∥∥Xh(s)−Y h(s)
∥∥∥ds (1.107)

for any coupling operator Λ̃h, where K is defined in (1.95).
Now we need the following lemma, which is stated for instance in [4]:

Lemma 3. Let Ut be a strongly continuous semigroup on E with generator Λ whose
domain is D , α ∈ R be a constant and f ∈ D . Then Ut f ≤ eαt f if and only if
Λ f ≤ α f .

Proof. (⇐) Let Λ f ≤ α f , then by Kolmogorov’s equation

d
dt

Ut f = ΛUt f ≤ αUt f .

Thus by Gronwall’s lemma

Ut f ≤ eαtU0 f = eαt f .

(⇒) Let Ut f ≤ eαt f , then by definition of the generator

Λ f = lim
t→0

Ut f − f
t

≤ lim
t→0

eαt −1
t

f = α f .

Hence we want to apply this lemma to the coupling operator Λ̃h and the function
ρ(x,y) = ||x−y||, in order to obtain an upper bound of the right hand side in (1.107).
So we have to choose a particular coupling for which there exists α ∈ R such that
the condition
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Λ̃hρ ≤ αρ (1.108)

is satisfied.
We use the so called coupling of marching soldiers, introduced by Chen in 1986

and whose description can be found for instance in [3]. This gives a Markov chain
in S(h)×S(h) such that, if it is in (x,y), it jumps to

• (x+ z,y+ z) at rate min{q(x,x+ z),q(y,y+ z)},
• (x+ z,y) at rate [q(x,x+ z)−q(y,y+ z)]+,
• (x,y+ z) at rate [q(x,x+ z)−q(y,y+ z)]−,

for any z ∈ S(h), where q(x,y) are the rates, i.e. the elements of the Q-matrix, of the
Markov chain Xh. It is a Markov coupling, i.e. it satisfies definition 4 part 2, since
min{a,b}+(a−b)+ = a for any a,b≥ 0.

Set hi j = −hei− he j + hei+ j and hi j = −hei + he j + hei− j. Thus the generator
of the marching coupling Λ̃ of the Markov chain Xh, whose generator is defined in
(1.10), is given by

Λ̃hg(x,y) =
1
h ∑

i, j
min{Ci j(x)xix j,Ci j(y)yiy j} [g(x+hi j,y+hi j)−g(x,y)] (1.109)

+
1
h ∑

i, j
[Ci j(x)xix j−Ci j(y)yiy j]

+ [g(x+hi j,y)−g(x,y)]

+
1
h ∑

i, j
[Ci j(x)xix j−Ci j(y)yiy j]

− [g(x,y+hi j)−g(x,y)]

+
1
h ∑

i
∑
j<i

min{Fi j(x)xi,Fi j(y)yi}
[
g(x+hi j,y+hi j)−g(x,y)

]
+

1
h ∑

i
∑
j<i

[Fi j(x)xi−Fi j(y)yi]
+ [g(x+hi j,y)−g(x,y)

]
+

1
h ∑

i
∑
j<i

[Fi j(x)xi−Fi j(y)yi]
− [g(x,y+hi j)−g(x,y)

]
for any g∈C (S(h)×S(h)). Hence, calculating this generator (1.109) in the distance
function ρ(x,y) = ||x− y||, we obtain

Λ̃hρ(x,y)≤ 3∑
i, j

∣∣Ci j(x)xix j−Ci j(y)yiy j
∣∣+3∑

i
∑
j<i

∣∣Fi j(x)xi−Fi j(y)yi
∣∣ , (1.110)

using the identity a++ a− = |a| for any real number a and the upper bound ||x−
y− z||− ||x− y|| ≤ ||z|| ≤ 3h whereas z can be either −hei−he j +hei+ j or −hei +
he j +hei− j.

In order to get an estimate of the above equation, we shall consider the two func-
tions u,v : S→ RN×N ∼= RN2

, where N = N(h), defined by

ui j(x) := Ci j(x)xix j (1.111)
vi j(x) := Fi j(x)xiI]0,+∞[(i− j). (1.112)
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So the right hand side in (1.110) is equal to

3||u(x)−u(y)||`1 +3||v(x)− v(y)||`1 .

The derivatives of u and v are given by

∂ui j

∂xk
(x) =

∂Ci j(x)
∂xk

xix j +Ci j(x)δikx j +Ci j(x)xiδ jk

and
∂vi j

∂xk
(x) =

(
∂Fi j(x)

∂xk
xi +Fi j(x)δik

)
I]0,+∞[(i− j).

Thus we apply the mean value theorem to get

||u(x)−u(y)||`1 + ||v(x)− v(y)||`1

=

∥∥∥∥∂u
∂x

(z).ξ
∥∥∥∥
`1
+

∥∥∥∥∂v
∂x

(w).ξ
∥∥∥∥
`1

≤∑
i jk

∣∣∣∣∂ui j

∂xk
(z)
∣∣∣∣ |ξk|+∑

ik
∑
j<i

∣∣∣∣∂vi j

∂xk
(w)
∣∣∣∣ |ξk|

≤C(1)||z||2`1 ||ξ ||`1 +2C||z||`1 ||ξ ||`1 +F(1)||w||`1 ||ξ ||`1 +F ||ξ ||`1

for any x,y∈ S(h) and for certain z and w in S, where ξ = x−y. The latter inequality
follows from (1.31) and (1.32).

Therefore (1.110) becomes

Λ̃hρ(x,y)≤ 3(C(1)R2 +2CR+F(1)R+F)||x− y||`1

for any x and y in S(h). If we use the estimate ||x−y||`1 ≤
√

N||x−y|| for any x and
y in S(h) then

Λ̃hρ(x,y)≤M2
√

N(h)||x− y||, (1.113)

where M2 := 3(C(1)R2 + 2CR+F(1)R+F) is constant, which says that (1.108)
holds with α := M2

√
N(h)> 0.

Thus we can apply lemma 3 to the marching coupling, so that

Ẽx,y
∥∥∥Xh(s)−Y h(s)

∥∥∥≤ eαs||x− y||

for any s ∈ [0,τ] and x 6= y ∈ S(h). Hence (1.107) becomes

||Fh(x)−Fh(y)|| ≤ K
∫

τ

0
eαs||x− y||ds≤ Kτeατ ||x− y||,

which is (1.65) where L1 is the function defined in (1.75):

||Fh(x)−Fh(y)|| ≤ KτeM2τ
√

N(h)||x− y||.
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1.4.3.1 Boundness of the drift

Applying (1.104) simply to the process Xh, without considering couplings, we ob-
tain

Fh(x,b) = E
[∫

τ

0
f (Xh(s,x,b))ds

]
(1.114)

Hence from (1.114), by means of (1.64), we get also an upper bound for the drift:

||Fh(x,b)|| ≤ L2τ (1.115)

for every x ∈ S(h) and b ∈ E, where L2 is defined in (1.93).

1.4.4 Bounds for ∆

We find an estimate for E(∆ h
π(k)|Xh

π = x) where ∆ h
π(k) is the number of coalitions

that perform a transition between time step kτ and (k+1)τ . Because of Markovian-
ity the above expectation is independent of k, so we can suppose k = 0. Hence we
consider E(∆ h|Xh(0) = x0), where ∆ h is the number of coalitions that change their
state between 0 and τ .

If the system is in x0 in t = 0 there is an exponential clock of parameter s(x0,b)
such that, when it clicks, the system changes its state, say it goes in x1. Now there is
an other exponential clock of parameter s(x1,b) such that, when it clicks, the system
changes its state, say it goes in x2. We repeat this procedure until we arrive at time
τ . Note that ∆ h is then less or equal than the number of clicks that we get from 0 to
τ .

Thus to estimate ∆ h we take an upper bound of s(x,b) defined in (1.8)

s(x,b) = ∑
i, j

nin jhCi j(x,b)+∑
i

niFi j(x,b),

for any x ∈ S(h). Using assumption (1.31) on Ci j and Fi j we have

s(x,b)≤Ch∑
i, j

nin j +F ∑
i

ni =Ch

(
∑

i
ni

)2

+F ∑
i

ni

for any x and b. According to (1.44) ∑i ni ≤ N(h)≤ R
h , which gives

s(x,b)≤ 1
h
(CR2 +FR).

Hence for any x ∈ S(h) and b ∈ E, s(x,b) is bounded by a constant sh that depends
only on h:

sh :=
1
h
(CR2 +F). (1.116)
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For a constant s the number of occurrences of clicks is known to be a Poisson
process of intensity s. Thus for a constant s the number of clicks from 0 to τ is a ran-
dom variable X with Poisson distribution of parameter sτ . This implies in particulat
that E(X) = sτ and E(X2) = sτ(1+ sτ).

Hence the expectations for ∆ h are bounded by

E(∆ h|Xh(0) = x0)≤ sh
τ

and
E((∆ h)2|Xh(0) = x0)≤ sh

τ(1+ sh
τ)

for any x0 ∈ S(h). Using (1.116) we find

E(∆ h|Xh(0) = x0)≤
1
h

τ(CR2 +F)

and

E((∆ h)2|Xh(0) = x0)≤
1
h

τ(CR2 +F)[1+
1
h
(CR2 +F)τ]

=
1
h2 τ(CR2 +F)[τ(CR2 +F)+h].

Therefore (1.61) and (1.62) hold with the bounds specified in (1.73) and (1.74).
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