61 research outputs found

    The Generation of Magnetic Fields Through Driven Turbulence

    Full text link
    We have tested the ability of driven turbulence to generate magnetic field structure from a weak uniform field using three dimensional numerical simulations of incompressible turbulence. We used a pseudo-spectral code with a numerical resolution of up to 1443144^3 collocation points. We find that the magnetic fields are amplified through field line stretching at a rate proportional to the difference between the velocity and the magnetic field strength times a constant. Equipartition between the kinetic and magnetic energy densities occurs at a scale somewhat smaller than the kinetic energy peak. Above the equipartition scale the velocity structure is, as expected, nearly isotropic. The magnetic field structure at these scales is uncertain, but the field correlation function is very weak. At the equipartition scale the magnetic fields show only a moderate degree of anisotropy, so that the typical radius of curvature of field lines is comparable to the typical perpendicular scale for field reversal. In other words, there are few field reversals within eddies at the equipartition scale, and no fine-grained series of reversals at smaller scales. At scales below the equipartition scale, both velocity and magnetic structures are anisotropic; the eddies are stretched along the local magnetic field lines, and the magnetic energy dominates the kinetic energy on the same scale by a factor which increases at higher wavenumbers. We do not show a scale-free inertial range, but the power spectra are a function of resolution and/or the imposed viscosity and resistivity. Our results are consistent with the emergence of a scale-free inertial range at higher Reynolds numbers.Comment: 14 pages (8 NEW figures), ApJ, in press (July 20, 2000?

    Radio-wave propagation through a medium containing electron-density fluctuations described by an anisotropic Goldreich-Sridhar spectrum

    Full text link
    We study the propagation of radio waves through a medium possessing density fluctuations that are elongated along the ambient magnetic field and described by an anisotropic Goldreich-Sridhar power spectrum. We derive general formulas for the wave phase structure function, visibility, angular broadening, diffraction-pattern length scales, and scintillation time scale for arbitrary distributions of turbulence along the line of sight, and specialize these formulas to idealized cases.Comment: 25 pages, 3 figures, submitted to Ap

    Simulating Supersonic Turbulence in Magnetized Molecular Clouds

    Full text link
    We present results of large-scale three-dimensional simulations of weakly magnetized supersonic turbulence at grid resolutions up to 1024^3 cells. Our numerical experiments are carried out with the Piecewise Parabolic Method on a Local Stencil and assume an isothermal equation of state. The turbulence is driven by a large-scale isotropic solenoidal force in a periodic computational domain and fully develops in a few flow crossing times. We then evolve the flow for a number of flow crossing times and analyze various statistical properties of the saturated turbulent state. We show that the energy transfer rate in the inertial range of scales is surprisingly close to a constant, indicating that Kolmogorov's phenomenology for incompressible turbulence can be extended to magnetized supersonic flows. We also discuss numerical dissipation effects and convergence of different turbulence diagnostics as grid resolution refines from 256^3 to 1024^3 cells.Comment: 10 pages, 3 figures, to appear in the proceedings of the DOE/SciDAC 2009 conferenc

    Perpendicular Ion Heating by Low-Frequency Alfven-Wave Turbulence in the Solar Wind

    Full text link
    We consider ion heating by turbulent Alfven waves (AWs) and kinetic Alfven waves (KAWs) with perpendicular wavelengths comparable to the ion gyroradius and frequencies smaller than the ion cyclotron frequency. When the turbulence amplitude exceeds a certain threshold, an ion's orbit becomes chaotic. The ion then interacts stochastically with the time-varying electrostatic potential, and the ion's energy undergoes a random walk. Using phenomenological arguments, we derive an analytic expression for the rates at which different ion species are heated, which we test by simulating test particles interacting with a spectrum of randomly phased AWs and KAWs. We find that the stochastic heating rate depends sensitively on the quantity epsilon = dv/vperp, where vperp is the component of the ion velocity perpendicular to the background magnetic field B0, and dv (dB) is the rms amplitude of the velocity (magnetic-field) fluctuations at the gyroradius scale. In the case of thermal protons, when epsilon << eps1, where eps1 is a constant, a proton's magnetic moment is nearly conserved and stochastic heating is extremely weak. However, when epsilon > eps1, the proton heating rate exceeds the cascade power that would be present in strong balanced KAW turbulence with the same value of dv, and magnetic-moment conservation is violated. For the random-phase waves in our test-particle simulations, eps1 is approximately 0.2. For protons in low-beta plasmas, epsilon is approximately dB/B0 divided by the square root of beta, and epsilon can exceed eps1 even when dB/B0 << eps1. At comparable temperatures, alpha particles and minor ions have larger values of epsilon than protons and are heated more efficiently as a result. We discuss the implications of our results for ion heating in coronal holes and the solar wind.Comment: 14 pages, 5 figures, submitted to Ap

    Systematics of the magnetic-Prandtl-number dependence of homogeneous, isotropic magnetohydrodynamic turbulence

    Get PDF
    We present the results of our detailed pseudospectral direct numerical simulation (DNS) studies, with up to 102431024^3 collocation points, of incompressible, magnetohydrodynamic (MHD) turbulence in three dimensions, without a mean magnetic field. Our study concentrates on the dependence of various statistical properties of both decaying and statistically steady MHD turbulence on the magnetic Prandtl number PrM{\rm Pr_M} over a large range, namely, 0.01PrM100.01 \leq {\rm Pr_M} \leq 10. We obtain data for a wide variety of statistical measures such as probability distribution functions (PDFs) of moduli of the vorticity and current density, the energy dissipation rates, and velocity and magnetic-field increments, energy and other spectra, velocity and magnetic-field structure functions, which we use to characterise intermittency, isosurfaces of quantities such as the moduli of the vorticity and current, and joint PDFs such as those of fluid and magnetic dissipation rates. Our systematic study uncovers interesting results that have not been noted hitherto. In particular, we find a crossover from larger intermittency in the magnetic field than in the velocity field, at large PrM{\rm Pr_M}, to smaller intermittency in the magnetic field than in the velocity field, at low PrM{\rm Pr_M}. Furthermore, a comparison of our results for decaying MHD turbulence and its forced, statistically steady analogue suggests that we have strong universality in the sense that, for a fixed value of PrM{\rm Pr_M}, multiscaling exponent ratios agree, at least within our errorbars, for both decaying and statistically steady homogeneous, isotropic MHD turbulence.Comment: 49 pages,33 figure

    Statistical features of rapidly rotating decaying turbulence: Enstrophy and energy spectra and coherent structures

    Get PDF
    In this paper we investigate the properties of rapidly rotating decaying turbulence using numerical simulations and phenomenological modelling. We find that as the turbulent flow evolves in time, the Rossby number decreases to 103\sim 10^{-3}, and the flow becomes quasi-two-dimensional with strong coherent columnar structures arising due to the inverse cascade of energy. We establish that a major fraction of energy is confined in Fourier modes (±1,0,0)(\pm1,0,0) and (0,±1,0)(0,\pm1,0) that correspond to the largest columnar structure in the flow. For wavenumbers (kk) greater than the enstrophy dissipation wavenumber (kdk_d), our phenomenological arguments and numerical study show that the enstrophy flux and spectrum of a horizontal cross-section perpendicular to the axis of rotation are given by ϵωexp(C(k/kd)2)\epsilon_\omega\exp(-C(k/k_d)^2) and Cϵω2/3k1exp(C(k/kd)2)C\epsilon_\omega^{2/3}k^{-1}\exp(-C(k/k_d)^2) respectively; for this 2D flow, ϵω\epsilon_\omega is the enstrophy dissipation rate, and CC is a constant. Using these results, we propose a new form for the energy spectrum of rapidly rotating decaying turbulence: E(k)=Cϵω2/3k3exp(C(k/kd)2)E(k)=C\epsilon_\omega^{2/3}k^{-3}\exp(-C(k/k_d)^2). This model of the energy spectrum is based on wavenumber-dependent enstrophy flux, and it deviates significantly from power law energy spectrum reported earlier

    Colloquium: Nonlinear collective interactions in quantum plasmas with degenerate electron fluids

    Full text link
    The current understanding of some important nonlinear collective processes in quantum plasmas with degenerate electrons is presented. After reviewing the basic properties of quantum plasmas, we present model equations (e.g. the quantum hydrodynamic and effective nonlinear Schr\"odinger-Poisson equations) that describe collective nonlinear phenomena at nanoscales. The effects of the electron degeneracy arise due to Heisenberg's uncertainty principle and Pauli's exclusion principle for overlapping electron wavefunctions that result in tunneling of electrons and the electron degeneracy pressure. Since electrons are Fermions (spin-1/2), there also appears an electron spin current and a spin force acting on electrons due to the Bohr magnetization. The quantum effects produce new aspects of electrostatic (ES) and electromagnetic (EM) waves in a quantum plasma that are summarized in here. Furthermore, we discuss nonlinear features of ES ion waves and electron plasma oscillations (ESOs), as well as the trapping of intense EM waves in quantum electron density cavities. Specifically, simulation studies of the coupled nonlinear Schr\"odinger (NLS) and Poisson equations reveal the formation and dynamics of localized ES structures at nanoscales in a quantum plasma. We also discuss the effect of an external magnetic field on the plasma wave spectra and develop quantum magnetohydrodynamic (Q-MHD) equations. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects, in plasma-assisted nanotechnology, and in the next-generation of intense laser-solid density plasma interaction experiments.Comment: 25 pages, 14 figures. To be published in Reviews of Modern Physic

    Astrophysical turbulence modeling

    Full text link
    The role of turbulence in various astrophysical settings is reviewed. Among the differences to laboratory and atmospheric turbulence we highlight the ubiquitous presence of magnetic fields that are generally produced and maintained by dynamo action. The extreme temperature and density contrasts and stratifications are emphasized in connection with turbulence in the interstellar medium and in stars with outer convection zones, respectively. In many cases turbulence plays an essential role in facilitating enhanced transport of mass, momentum, energy, and magnetic fields in terms of the corresponding coarse-grained mean fields. Those transport properties are usually strongly modified by anisotropies and often completely new effects emerge in such a description that have no correspondence in terms of the original (non coarse-grained) fields.Comment: 88 pages, 26 figures, published in Reports on Progress in Physic

    Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection

    Full text link
    Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, including the situations when turbulent reconnection is self-driven, i.e. the turbulence in the system is generated by the reconnection process itself. We show how turbulent reconnection entails the violation of magnetic flux freezing, the conclusion that has really far reaching consequences for many realistically turbulent astrophysical environments. In addition, we consider observational testing of turbulent reconnection as well as numerous implications of the theory. The former includes the Sun and solar wind reconnection, while the latter include the process of reconnection diffusion induced by turbulent reconnection, the acceleration of energetic particles, bursts of turbulent reconnection related to black hole sources as well as gamma ray bursts. Finally, we explain why turbulent reconnection cannot be explained by turbulent resistivity or derived through the mean field approach.Comment: 66 pages, 24 figures, a chapter of the book "Magnetic Reconnection - Concepts and Applications", editors W. Gonzalez, E. N. Parke

    Simulations of small-scale turbulent dynamo

    Full text link
    We report an extensive numerical study of the small-scale turbulent dynamo at large magnetic Prandtl numbers Pm. A Pm scan is given for the model case of low-Reynolds-number turbulence. We concentrate on three topics: magnetic-energy spectra and saturation levels, the structure of the field lines, and the field-strength distribution. The main results are (1) the folded structure (direction reversals at the resistive scale, field lines curved at the scale of the flow) persists from the kinematic to the nonlinear regime; (2) the field distribution is self-similar and appears to be lognormal during the kinematic regime and exponential in the saturated state; and (3) the bulk of the magnetic energy is at the resistive scale in the kinematic regime and remains there after saturation, although the spectrum becomes much shallower. We propose an analytical model of saturation based on the idea of partial two-dimensionalization of the velocity gradients with respect to the local direction of the magnetic folds. The model-predicted spectra are in excellent agreement with numerical results. Comparisons with large-Re, moderate-Pm runs are carried out to confirm the relevance of these results. New features at large Re are elongation of the folds in the nonlinear regime from the viscous scale to the box scale and the presence of an intermediate nonlinear stage of slower-than-exponential magnetic-energy growth accompanied by an increase of the resistive scale and partial suppression of the kinetic-energy spectrum in the inertial range. Numerical results for the saturated state do not support scale-by-scale equipartition between magnetic and kinetic energies, with a definite excess of magnetic energy at small scales. A physical picture of the saturated state is proposed.Comment: aastex using emulateapj; 32 pages, final published version; a pdf file (4Mb) of the paper containing better-quality versions of figs. 5, 8, 12, 15, 17 is available from http://www.damtp.cam.ac.uk/user/as629 or by email upon request
    corecore