219 research outputs found

    Flavor and Charge Symmetry in the Parton Distributions of the Nucleon

    Get PDF
    Recent calculations of charge symmetry violation(CSV) in the valence quark distributions of the nucleon have revealed that the dominant symmetry breaking contribution comes from the mass associated with the spectator quark system.Assuming that the change in the spectator mass can be treated perturbatively, we derive a model independent expression for the shift in the parton distributions of the nucleon. This result is used to derive a relation between the charge and flavor asymmetric contributions to the valence quark distributions in the proton, and to calculate CSV contributions to the nucleon sea. The CSV contribution to the Gottfried sum rule is also estimated, and found to be small

    Participatory instructional redesign by students and teachers in secondary education: effects on perceptions of instruction

    Get PDF
    Könings, K. D., Brand-Gruwel, S., & Van Merriënboer, J. J. G. (2011). Participatory instructional redesign by students and teachers in secondary education: effects on perceptions of instruction. Instructional Science, 39(5), 737–762.Students’ perceptions of instruction are important because they direct the learning of students. The fact that teachers have only limited knowledge of these perceptions is likely to threaten the effectiveness of learning, because congruence between interpretations of an instructional intervention is necesarry for its optimal use. This study examines participatory design as a strategy for taking student perceptions into account in instructional re/design. Participatory design meetings of groups of teachers and seven co-designing students in a secondary education setting identified changes to improve the regular education process. The results on changes in student perceptions, perceived-desired discrepancy, and teacher-student disagreement showed some improvement for the co-designers but, unexpectedly, limited or even negative effects for the non-co-designing students. Possible causes are discussed. Participatory design seems to have potential for improving education, but further research is needed

    Functional Modifications of Acid-Sensing Ion Channels by Ligand-Gated Chloride Channels

    Get PDF
    Together, acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that ASICs were reversibly inhibited by activation of GABAA receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABAA receptor-mediated currents. Moreover, activation of the GABAA receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABAA receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABAA receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABAA receptors, also modified ASICs in spinal neurons. We conclude that GABAA receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels

    Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation

    Get PDF
    This study was supported by the British Heart Foundation (PG 09/002/ 2642). AJR is funded by King’s College London British Heart Foundation Centre of Excellence and EI was supported by the Department of Health via National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s and St Tomas’ NHF Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust. BG was supported by a British Heart Foundation studentship (FS/10/009/28166) and DC by an Arthritis Research UK Fellowship (18103)

    Polysomal mRNA Association and Gene Expression in <i>Trypanosoma brucei</i>

    Get PDF
    Background: The contrasting physiological environments of Trypanosoma brucei procyclic (insect vector) and bloodstream (mammalian host) forms necessitates deployment of different molecular processes and, therefore, changes in protein expression. Transcriptional regulation is unusual in T. brucei because the arrangement of genes is polycistronic; however, genes which are transcribed together are subsequently cleaved into separate mRNAs by trans-splicing. Following pre-mRNA processing, the regulation of mature mRNA stability is a tightly controlled cellular process. While many stage-specific transcripts have been identified, previous studies using RNA-seq suggest that changes in overall transcript level do not necessarily reflect the abundance of the corresponding protein. Methods: To better understand the regulation of gene expression in T. brucei, we performed a bioinformatic analysis of RNA-seq on total, sub-polysomal, and polysomal mRNA samples. We further cross-referenced our dataset with a previously published proteomics dataset to identify new protein coding sequences. Results: Our analyses showed that several long non-coding RNAs are more abundant in the sub-polysome samples, which possibly implicates them in regulating cellular differentiation in T. brucei. We also improved the annotation of the T.brucei genome by identifying new putative protein coding transcripts that were confirmed by mass spectrometry data. Conclusions: Several long non-coding RNAs are more abundant in the sub-polysome cellular fractions and might pay a role in the regulation of gene expression. We hope that these data will be of wide general interest, as well as being of specific value to researchers studying gene regulation expression and life stage transitions in T. brucei

    Anti-phospholipid human monoclonal antibodies inhibit CCR5-tropic HIV-1 and induce β-chemokines

    Get PDF
    Traditional antibody-mediated neutralization of HIV-1 infection is thought to result from the binding of antibodies to virions, thus preventing virus entry. However, antibodies that broadly neutralize HIV-1 are rare and are not induced by current vaccines. We report that four human anti-phospholipid monoclonal antibodies (mAbs) (PGN632, P1, IS4, and CL1) inhibit HIV-1 CCR5-tropic (R5) primary isolate infection of peripheral blood mononuclear cells (PBMCs) with 80% inhibitory concentrations of <0.02 to ∼10 µg/ml. Anti-phospholipid mAbs inhibited PBMC HIV-1 infection in vitro by mechanisms involving binding to monocytes and triggering the release of MIP-1α and MIP-1β. The release of these β-chemokines explains both the specificity for R5 HIV-1 and the activity of these mAbs in PBMC cultures containing both primary lymphocytes and monocytes

    Characterization of Voltage-Gated Ca2+ Conductances in Layer 5 Neocortical Pyramidal Neurons from Rats

    Get PDF
    Neuronal voltage-gated Ca2+ channels are involved in electrical signalling and in converting these signals into cytoplasmic calcium changes. One important function of voltage-gated Ca2+ channels is generating regenerative dendritic Ca2+ spikes. However, the Ca2+ dependent mechanisms used to create these spikes are only partially understood. To start investigating this mechanism, we set out to kinetically and pharmacologically identify the sub-types of somatic voltage-gated Ca2+ channels in pyramidal neurons from layer 5 of rat somatosensory cortex, using the nucleated configuration of the patch-clamp technique. The activation kinetics of the total Ba2+ current revealed conductance activation only at medium and high voltages suggesting that T-type calcium channels were not present in the patches. Steady-state inactivation protocols in combination with pharmacology revealed the expression of R-type channels. Furthermore, pharmacological experiments identified 5 voltage-gated Ca2+ channel sub-types – L-, N-, R- and P/Q-type. Finally, the activation of the Ca2+ conductances was examined using physiologically derived voltage-clamp protocols including a calcium spike protocol and a mock back-propagating action potential (mBPAP) protocol. These experiments enable us to suggest the possible contribution of the five Ca2+ channel sub-types to Ca2+ current flow during activation under physiological conditions

    HTLV-1 bZIP Factor Induces T-Cell Lymphoma and Systemic Inflammation In Vivo

    Get PDF
    Human T-cell leukemia virus type 1 (HTLV-1) is the causal agent of a neoplastic disease of CD4+ T cells, adult T-cell leukemia (ATL), and inflammatory diseases including HTLV-1 associated myelopathy/tropical spastic paraparesis, dermatitis, and inflammatory lung diseases. ATL cells, which constitutively express CD25, resemble CD25+CD4+ regulatory T cells (Treg). Approximately 60% of ATL cases indeed harbor leukemic cells that express FoxP3, a key transcription factor for Treg cells. HTLV-1 encodes an antisense transcript, HTLV-1 bZIP factor (HBZ), which is expressed in all ATL cases. In this study, we show that transgenic expression of HBZ in CD4+ T cells induced T-cell lymphomas and systemic inflammation in mice, resembling diseases observed in HTLV-1 infected individuals. In HBZ-transgenic mice, CD4+Foxp3+ Treg cells and effector/memory CD4+ T cells increased in vivo. As a mechanism of increased Treg cells, HBZ expression directly induced Foxp3 gene transcription in T cells. The increased CD4+Foxp3+ Treg cells in HBZ transgenic mice were functionally impaired while their proliferation was enhanced. HBZ could physically interact with Foxp3 and NFAT, thereby impairing the suppressive function of Treg cells. Thus, the expression of HBZ in CD4+ T cells is a key mechanism of HTLV-1-induced neoplastic and inflammatory diseases
    corecore