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Abstract 
Background: The contrasting physiological environments of 
Trypanosoma brucei procyclic (insect vector) and bloodstream 
(mammalian host) forms necessitates deployment of different 
molecular processes and, therefore, changes in protein expression. 
Transcriptional regulation is unusual in T. brucei because the 
arrangement of genes is polycistronic; however, genes which are 
transcribed together are subsequently cleaved into separate mRNAs 
by trans-splicing. Following pre-mRNA processing, the regulation of 
mature mRNA stability is a tightly controlled cellular process. While 
many stage-specific transcripts have been identified, previous studies 
using RNA-seq suggest that changes in overall transcript level do not 
necessarily reflect the abundance of the corresponding protein. 
Methods: To better understand the regulation of gene expression in 
T. brucei, we performed a bioinformatic analysis of RNA-seq on total, 
sub-polysomal, and polysomal mRNA samples. We further cross-
referenced our dataset with a previously published proteomics 
dataset to identify new protein coding sequences. 
Results: Our analyses showed that several long non-coding RNAs are 
more abundant in the sub-polysome samples, which possibly 
implicates them in regulating cellular differentiation in T. brucei. We 
also improved the annotation of the T.brucei genome by identifying 
new putative protein coding transcripts that were confirmed by mass 
spectrometry data. 
Conclusions: Several long non-coding RNAs are more abundant in the 
sub-polysome cellular fractions and might pay a role in the regulation 
of gene expression. We hope that these data will be of wide general 
interest, as well as being of specific value to researchers studying 
gene regulation expression and life stage transitions in T. brucei.
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Introduction
Trypanosoma brucei, a protozoan parasite transmitted by the  
tsetse fly, causes human African trypanosomiasis (HAT) and 
nagana in cattle1. The parasite undergoes a complex lifecycle  
between its insect vectors and mammalian hosts2: Slender  
bloodstream form (BSF) parasite proliferate predominantly 
in the blood and lymph of the infected mammalian host in the 
first stage of the disease and the second neurological stage of 
the disease occurs when these parasites cross the blood-brain 
barrier. Some of the slender BSF parasites differentiate into  
non-replicative stumpy forms in the bloodstream and these are  
pre-adapted for transformation into replicating procyclic form 
in the testse vector midgut. Procyclic forms further differentiate 
into replicating epimastigote and then non-dividing metacyclic  
trypomastigote forms during parasite migration to the tsetse 
salivary glands. The metacyclic parasites are transferred to a  
new host during a bloodmeal and after differentiation into slen-
der BSF parasites, the lifecycle in complete. The BSF and  
PCF parasites are the easiest to propagate in the laboratory and  
are the most studied. 

Transcription is particularly interesting in T. brucei because 
the arrangement of its genes is polycistronic. Thus, RNA  
Polymerase II (RNA Pol II) transcribes protein-coding genes 
into large polycistrons containing several transcripts. How-
ever, the polycistron does not linger as it is co-transcriptionally  
processed into individual mRNAs3. The processing of the 
transcription unit occurs by trans-splicing coupled to cleav-
age of the 3´ end by the polyadenylation machinery for poly(A)  
addition4,5. During trans-splicing, a capped 39-nucleotide (nt) 
spliced leader (SL) mini-exon is added to the 5′ termini of  
mRNAs. The SL sequence was first discovered when two dif-
ferent VSG transcripts were found with an identical leader 
sequence at their 5′ ends, which was not evident in their genomic  
sequence6–8. This mini-exon is independently transcribed from  
a tandem array of 140-nt spliced leader (SL) RNA genes9,10.

Recent studies using RNA-seq have greatly improved our 
understanding of the T. brucei transcriptional landscape across  
the BSF and PCF life stages2,11–15. These studies have found 
new transcripts, many non-coding RNAs, and facilitated 
the correction of numerous annotations across the T. brucei  
genome. While several aspects of translational control have 
been investigated in T. brucei, there are only a few examples 
of polysome profile analysis that have explored the efficiency 
of translation between BSF and PCF parasites12,16. Numerous  
80S ribosomes can be translating an mRNA transcript at the same 
time, producing so-called ‘polysomes’17. The number of ribos-
omes on an mRNA generally reflects that transcript’s rate of  
translation under given conditions18. Further, a particular mRNA’s 
higher or lower than average association with ribosomes indi-
cates the potential involvement of gene-specific regulatory  
mechanisms19.

To make a contribution to our understanding of the regulation 
of gene expression in trypanosomes, we investigated mRNA  
recruitment to ribosomes with RNA-seq of total polyA+,  
sub-polysomal, and poly-ribosomal mRNA purified from BSF  
and PCF life stages of T. brucei.

Methods
Cell culture
T. brucei bloodstream form cells, strain 427, VSG variant  
MITat1.220 (kindly provided by Prof. George Cross) were cul-
tured at 37°C with 5% CO

2
 in cell culture flasks with filter 

lids (Greiner). Cells were grown to a maximum density of  
3x106 cells/ml in HMI-9T medium (HMI-9 powder, Gibco  
Catalog Number: 07490915N). HMI-9T contains variations on 
the HMI-9 medium described in 21: thioglycerol (Sigma, Cata-
log Number: m6145) was used instead of β-mercaptoethanol,  
and GlutaMAX (Gibco, Catalog Number: 35050-38) was used 
instead of L-glutamine for their increased stability. T. brucei  
procyclic form transgenic cell line 29.13.6 (kindly provided 
by Prof. George Cross) was cultured at 28°C in Becton Dickin-
son culture flasks. Cells were grown to a maximum density of  
4x107 cells/ml in SDM-79 medium (Invitrogen, custom made 
on request, Catalog Number: N/A)22 supplemented with 15% 
fetal bovine serum (FBS) (PAA, Catalog Number: A11-101),  
GlutaMAX (Gibco, Catalog Number: 35050-38), and 15 µg/ml 
hemin (Sigma, Catalog Number: H9039).

Polysome fractionation and RNA extraction
Log-phase cultures of T. brucei BSF and PCF cells were incu-
bated with 50 µg/ml cycloheximide (Sigma, Catalog Number:  
C4859) for 10 min prior to the start of polysome purifica-
tion procedures. Cells were pelleted by centrifugation at 800 g  
for 10 min at 4°C. PCF cells were washed with PBS (137 mM 
NaCl, VWR Catalog Number: X190; 2.7 mM KCl, VWR  
Catalog Number: ICNA0215194401; 10 mM Na

2
HPO

4, 
VWR 

Catalog Number: 4062-01; 2 mM KH
2
PO

4 
pH 7.4, VWR  

Catalog Number: 26925.295) containing 1 mg/ml cyclohex-
imide (Sigma Catalog Number: C4859), while BSF cells were 
washed with trypanosome dilution buffer (5 mM KCl, VWR  
Catalog Number: ICNA0215194401; 80 mM NaCl, VWR Cata-
log Number: X190; 1 mM MgSO

4 
VWR Catalog Number:  

2506-01; 20 mM Na
2
HPO

4, 
VWR Catalog Number: 4062-01; 

2 mM NaH
2
PO

4, 
VWR Catalog Number: ICNA0219550091;  

20 mM glucose pH 7.4
, 
VWR Catalog Number: 1910-05) con-

taining 1 mg/ml cycloheximide (Sigma Catalog Number: 
C4859). Cells were resuspended in polysome lysis buffer  
(120 mM KCl, VWR Catalog Number: ICNA0215194401; 
2 mM MgCl

2 
VWR Catalog Number: ICNA0520984480; 20 

mM Tris-HCl pH 7.5 VWR Catalog Number: ICNA04816100;  
1 mM DTT Sigma Catalog Number: 10708984001; 1% n-octylg-
lycoside Sigma Catalog Number: 10634425001; 50 µl RNAsin 
Promega Catalog Number: N2111; 2 µg/ml leupeptin Sigma Cat-
alog Number: L2884; 1 µg/ml aprotinin Sigma Catalog Number: 
A6279; 1 µM TLCK Sigma Catalog Number: 90182; 1 mM  
PMSF Sigma Catalog Number: 10837091001; 1mg/ml 
cycloheximide Sigma Catalog Number: C4859). The detergent  
n-octylglycoside (NOG) was chosen because it does not absorb 
at 254 nm. The lysates were loaded on top of 10 ml sucrose 
(Sigma Catalog Number: S0389) gradients (5 increments, 2ml  
each: 10%–50% sucrose) and centrifuged for 2 h at 38,000 rpm 
at 4°C in a Beckman ultracentrifuge using a SW41Ti rotor.  
Gradients were fractionated (0.5 ml fractions) and analysed  
for nucleic acid content by a Nanodrop spectrophotometer at 
254 nm. RNA was purified using RNeasy kits (Qiagen, Catalog  
Number: 74104) from pooled sub-polysome and poly-ribosomal 
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fractions. Gradient analysis was also performed using a gradi-
ent collector (Teledyne) with continuous monitoring at 254 nm.  
Individual fractions were collected with a Foxy Jr. (Teledyne)  
fraction collector. Following collection, the RNA from each 
sample was purified as above and pooled according to the  
sub-polysomal and polysomal fractions identified in the  
absorbance trace.

Total RNA was extracted from bloodstream and procyclic 
form T. brucei using the RNeasy Mini Extraction Kit (Qiagen,  
Catalog Number: 74104). The protocol was carried out accord-
ing to manufacturer’s instructions with a few deviations for  
T. brucei. Cells were centrifuged for 10 min, 800 x g at room 
temperature, media was aspirated and the cell pellets were resus-
pended in buffer RLT (Qiagen, Catalog Number: 79216) and  
β-mercaptoethanol (Sigma Catalog Number: 444203) was 
added at a 1:100 dilution. One volume of 70% ethanol (Sigma  
Catalog Number: 51976) was added to the lysate and the  
mixture was transferred to the provided column. RNA was bound 
to the column by centrifugation for 15 sec, 10,000 x g. The  
column was then washed with Buffer RWI and twice with 
Buffer RPE (Qiagen, Catalog Number: 1018013). Following 
the washes, the column was transferred to a sterile (RNAse free)  
Eppendorf tube (Thermofisher, Catalog Number: AM12400), 
and the RNA was eluted in 50 μl RNase-free H

2
O (Thermofisher,  

Catalog Number: AM9916). The RNA concentration was then 
estimated from the A

260
 value using a Nanodrop 2000c spec-

trophotometer (Thermo) with path length settings adjusted for  
RNA (40). Following quantitation, the purified RNA was  
subsequently used for RNA-seq cDNA library preparation.

Preparation of cDNA libraries for RNA-seq
Total RNA, sub-polysomal, and poly-ribosomal RNA was  
isolated from BSF and PCF T. brucei followed by poly(A) 
mRNA enrichment with poly-T oligomers attached magnetic  
beads (Illumina). The mRNA was then fragmented into 200 nt 
fragments using Covaris Adaptive Focused Acoustics process 
with the following operating conditions: Sample volume 130 µl, 
duty cycle 10%, intensity 5, cycles per burst 200, processing  
time 60 s, water bath temperature 4°C, power mode frequency 
sweeping, degassing mode continuous. Fragmented mRNA 
was concentrated by ethanol precipitation and measured on  
an RNA Pico chip (Agilent 2100 Bioanalyzer). The first strand 
of cDNA was synthesized using reverse transcriptase (Invitrogen 
Life Technologies, Catalog Number: 18064-022) and random 
primers (Invitrogen Life Technologies, Catalog Number:  
1880007) using a Omnigene thermal cycler (25°C for 10 min. 
42°C for 50 min, 70°C for 15 min), followed by second strand 
cDNA synthesis using a Omnigene thermal cycler ( 16°C for 
60 min), producing double-stranded cDNA (NEBNext mRNA  
library kit for Illumina, NEB, Catalog Number: E6100.  
To blunt-end the DNA fragments, an end repair reaction was 
performed with Klenow polymerase (NEB, Catalog Number: 
M0210L), T4 DNA polymerase (NEB, Catalog Number: 
M0203L), and T4 polynucleotide kinase (NEB, Catalog Number:  
M0201L). A single 3´ adenosine overhang was added to the 
cDNA allowing the ligation of Illumina adaptors. These adap-
tors contain primer sites both for sequencing and complimentary 
annealing onto the Illumina flow cell surface (Top adapter:  

5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’ Bottom 
adapter 5′-GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG-
3’). Adaptor ligated cDNA fragments were measured on an  
Agilent DNA chip. The final cDNA libraries were sequenced on  
a HiSeq2000 (Illumina).

Bioinformatic analysis
The software versions of the packages used for the bioinfor-
matic analysis are listed in the file named “package_versions.txt”  
and deposited in the zenodo repository mtinti/polysome. The 
FASTQ files of technical replicates were concatenated together.  
The forward and reverse paired-end reads of the biological  
replicates (B_tot: 1 to 3, B_pol: 1 to 3, B_sub: 1 to 3, P_tot: 1 
to 3, P_pol: 1 to 3, P_sub: 1 to 3, where B=BSF, P=PCF, 
tot=total, pol=polysomal, sub=sub-polysomal) were aligned 
to the reference genome v46 of T. brucei clone TREU927 and  
427_2018 downloaded from TriTrypDB23 using Bowtie224, 
with the ‘very-sensitive-local’ pre-set alignment option. The 
alignments were converted to BAM format, reference sorted 
and indexed with SAMtools25. The genome coverage of the 
aligned reads was extracted from the BAM files using bedtools26  
with the -bg option to output bedGraph files. Fragment counts 
were determined from the BAM files using featureCounts27 with 
parameters: -p (pair end) -B (both ends successfully aligned) -C  
(skip fragments that have their two ends aligned to different 
chromosome) -M (count multi-mapping) -O (match overlapping 
features) -t transcript (count level) -g gene_id (summarization  
level).

Assembly of Poly A and Spliced Leader Tracks
Alignments with properly paired reads were extracted with  
SAMtool view using the -f 2 option and parsed with a custom 
python script to extract the paired reads containing the last  
14 bases of the spliced leader sequence (GTGAGGCCTCGCGA) 
in forward or reverse complement orientation. We used the last 
14 bases as they are unique28. The same script was used to extract  
reads containing poly(A) tracts of at least 10 bases that are 
often found at the intergenic regions of T. brucei29. The aligned 
reads were saved in BAM format and used to create genomic  
track coverage in bedGraph format.

Assembling T. brucei transcripts
The GFF annotation file for v46 of T. brucei clone TREU927 
was downloaded from TriTrypDB and converted to GTF with  
gffread30. The gene annotation file was supplemented with a 
recent prediction of long non-coding RNAs31 (doi: https://doi.org
/10.1101/2020.05.03.074625). Hypothetical new transcripts were 
predicted using Trinity32 and Scallop33. First, we identified new  
predicted genes with Scallop that was run for each biological 
replicate. The scallop predictions in GTF format were filtered 
to include only genes in intergenic regions that did not have any 
overlap with previously annotated genes. To achieve this, the  
GTF prediction files and the GTF reference file were converted 
to bed format with gtf2bed and intersected using bedops34.  
The filtered regions were converted back to GTF format, merged 
in a set of unique prediction with StringTie35 and added to the  
reference GTF file. In a second run, we used Trinity that was 
executed with the genome guided and jaccard clip param-
eters for each biological replicate. The predicted Trinity gene 
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sequences were aligned to the TREU927 genome with gmap36 
and the GFF output files of gmap were converted to GTF with  
gffread30. From this point, the same filtering methods used 
for the Scallop predictions were applied to the Trinity pre-
dictions that were added to the reference GTF file. We also  
downloaded from GenBank37 the genomic sequences and GFF  
annotation files for the entries: M94286 (maxicircle sequences), 
FM162566 427 VSG bloodstream form expression site 1 (BES1) 
locus, FM162567 427 BES2 locus and the minicircle sequences 
L25588, L25589, L25590, M15321. The GFF downloaded 
from GenBank were converted to GTF files with Biopython38.  
We also constructed a synthetic chromosome of VSG 427 gene 
transcripts with the sequences deposited at http://tryps.rock-
efeller.edu/ using the link http://129.85.245.250/Downloads/
vsgs_tb427_all_atleast150aas_cds.txt. The VSG sequences were 
concatenated with random DNA sequences of 50 base pairs to 
produce the synthetic chromosome (named fake_vsgs) and a GTF  
annotation file was produced. All the GTF annotation files 
were concatenated together as well as the gene sequences to  
produce a new assembly named tb927_5 (tb927_5.gtf).

Quality control
The quality of alignments were evaluated with Qualimap239  
using the bamqc and rnaseq options. The Qualimap2 output 
files, and the outputs of fastp, bowtie2, Picard Mark Duplicates, 
SAMtools flagastat, SAMtools stats and featureCounts were  
aggregated with MultiQC40, inspected and made available at 
https://polysome-qc.onrender.com. Dimensionality reduction was  
performed with the MDS algorithm implemented in SciPy41  
after log2 transform of the read counts of the top 500 expressed 
gene. The length and GC content of the predicted transcripts 
were extracted using bedtools nuc function after convert-
ing the GTF annotation file to bed format. The GC and length  
content biases were assessed with the cqn package for R42 
after removing genes with low counts using edgeR43. RPKM  
values for the dataset visualization were extracted using the  
cqn package for R.

Dataset visualization
Zero counts were replaced by the minimum value counts  
column-wise. The ANOVA-like test in edgeR was used to retain 
genes that differ in abundance in at least one of the samples  
with a false discovery rate <1%.

RadViz
The RadViz function implemented in the pandas python  
library44 was modified and used for the visualization. For each 
gene the median value of the three biological replicates was  
computed for each experiment (B_tot: 1 to 3, B_pol: 1 to 3, B_sub: 
1 to 3, P_tot: 1 to 3, P_pol: 1 to 3, P_sub: 1 to 3). For visualiza-
tion, each gene was colour coded and assigned to one of the six  
experiments (B_tot, B_pol, B_sub, P_tot, P_pol, P_sub) where  
it showed the maximum abundance value.

Clustering
The dataset was normalized raw-wise with a standard scale 
approach, by subtracting the minimum value and dividing by 

the maximum value minus the minimum value, for each gene  
count. The optimal number of clusters was determined with the 
elbow approach using the KElbowVisualizer function imple-
mented in the yellobrick python package45. The dataset was  
divided in 4 clusters using the K-means algorithm implemented  
in the scikit-learn python package46.

lncRNAs enrichment
The first spreadsheet “Ksplice lncRNAs” in Supplemental  
Table 1 of doi: https://doi.org/10.1101/2020.05.03.07462531 
was used to extract the hypothetical long non-coding mRNAs. 
The hypergeometric test implemented in scipy stats41 was used  
to compute the enrichment p-value for long non-coding genes  
in each cluster.

mRNA half-life
The “BS mRNA half-life (min)” and “PC mRNA half-life (min)” 
columns from Table S5 of Antwi et al., 201612 were used to  
extract the mRNA half-lives. The gene IDs were converted to  
those of version 46 of the TREU927 genome using TryTripDB.

GO term enrichment
The GO enrichment analysis was performed with the goatools 
python package47. The go-basic.obo file was downloaded with 
the goatools python package. The gaf association file was  
downloaded from TritrypDB. Enriched go term p-values were 
corrected with the Bonferroni option in goatools and filtered 
at 1% false discovery rate. For visualization, the GO terms 
were further filtered to include terms appearing uniquely in one  
of the clusters. The enriched GO terms in each cluster were 
sorted according to the adjusted p-value and the top-5 GO terms  
retained.

Identification of new protein coding genes
The Raw files described in our protein half-lives paper48 were  
processed in MaxQuant with the same parameters used to  
compute the iBAQ values, except that the predicted amino 
acidic sequences from the open reading frames downloaded 
from TriTrypDB version 46 were used. The start and end  
coordinates of the identified peptides were retrieved from the  
peptides.txt output files and organized in bed format. The  
coverage values of the genomic peptide coordinates in the bed  
file were set to 1. The file was sorted with the sort-bed  
function in bedtools. We then extracted the new gene predic-
tions from our assembled GTF file and converted them to bed  
format. Subsequently, we used the bedextract function in  
bedtools to extract the peptides mapped to new predicted tran-
scripts. The web interface of the phobius program49 was used 
to search for transmembrane domains and the web interfece  
ot the signalP algoritms 3.1 and 5.050 were used to search for 
signal peptides. The blast51 searches were performed with  
the web interfaces implemented at the NCBI or TriTrypDB. 
The Clustal Omega analysis were performed with the web  
interfaces implemented at EMBL-EBI52.

Coverage Visualisation. The software versions of the pack-
ages used for the visualisation of the bedGraph files are listed  
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in the file named “package_versions.txt” and deposited in the 
zenodo repository mtinti/polysome_coverage. The bedGraph  
files were visualized with the svist4get python package53.

Comparison with previous work
Transcription competency. Table S5 from Antwi et al.,  
201612 was downloaded and the Ribosomes/kb on polys-
omes values were extracted from spreadsheet 1 (PCF) and 
spreadsheet 2 (BSF). Gene names were mapped to the version 
46 of TREU927 genome using the gene search service at  
TriTrypDB23. Fragment counts for our dataset were determined 
from the BAM files using featureCounts27 with parameters: -
p -B -C -M -T 8 -t CDS -f to count only reads mapped to  
CDS regions. The read counts were filtered for low counts and 
normalized using edgeR43. Before computing the fraction of  
transcripts in polysomes, the polysome read counts were 
divided by 0.7 and the sub-polysome read counts were divided  
by 0.3 to correct for the total amount of mRNA found in 
polysome (70%) and sub-polysomal fractions (30%)12. The 
median of the fraction of transcripts in polysomal fraction was  
computed for the three biological replicates of BSF and PCF 
life stages and compared to the values reported in Antwi et al.,  
201612. The Pearson correlation coefficients between samples  
were computed with the python package pandas41.

Ribosome profile
The fastq files for the ribosome profile experiment were 
downloaded from the ENA archive54 with accession number  
PRJEB4801 and processed in a similar way as reported in 
Vasquex et al. 20142. Briefly, the fastq files for the BSF and PCF  
biological replicates samples were concatenated together and 
the Illumina adaptor sequences were trimmed with the fastp  
package55. Sequences shorter than 20 bases were removed with 
the fastp package55. Reads were aligned, counted, and normal-
ized as described above. The aligned reads in BAM format 
were used to create genomic track coverage in bedGraph  
format.

Sub-polysome / polysome differential abundance 
analysis and Grumpy Like Genes
Differential abundance analyses were carried out with edgeR  
using generalized linear models (GLM) and the correction  
factors provided by the cqn package. In this study, we tested the 
differential abundance between the sub-polysome and poly-
some samples of the BSF and PCF life stages. To identify the  
Grumpy Like genes31 we created a third model to study the  
differential transcript abundance between the sub-polysomal  
samples (mixed model of BSF and PCF) against the sub- 
polysomal samples (mixed model of BSF and PCF). The p-values 
of the test were corrected with the topTags function in R using  
the Benjamini–Hochberg method.

The code to reproduce the analysis pipeline and the figures, the 
raw data and additional python scripts used for this study are  
available at GitHub.

Results
In our study, cells were treated with the antibiotic cyclohex-
imide to prevent polysome run-off during sample preparation.  
Cycloheximide binds to the 60S ribosomal subunit and arrests 
translation elongation by inhibiting release of the deacylated  
tRNA from the ribosome E site, thereby stalling the ribosomes 
on mRNA in a polysomal state56. The high protein content of  
polysomes allows them to be separated throughout a sucrose 
gradient according to the number of ribosomes attached to the  
mRNA (Figure 1). To prepare samples for RNA-seq, cDNA 
libraries were generated from both total mRNA, polysome- 
associated mRNA and sub-polysomal mRNA transcripts. It is 
important to note that our procedure enabled the libraries to 
be completed without PCR amplification, therefore eliminat-
ing sample bias associated with variable amplification. In all,  
three (1 to 3) biological and three technical replicates of total 
(tot), sub-polysomal (sub), and polysomal (pol) mRNA RNA-seq  
experiments were performed for BSF (B) and PCF (P) life  
stages.

Assembling a reference transcriptome
Whole transcriptome experiments offer valuable resources to 
detect new genes and improve gene models. For this reason, we  
decided to create a complete TREU927 transcriptome assem-
bly before assigning our reads to the reference gene set. To this 
end, we first added a set of newly predicted genes described 
by Guegan, et al.31 encoding mostly long non-coding RNA  
(lncRNA). Subsequently, we implemented a genome-guided 
approach to annotating new genes discovered from our data-
set. This strategy consisted of mapping reads along the reference  
genome, followed by gene prediction (Methods). This final step 
allowed us to extend the number of transcribed genome loci  
from 11725 to 15743 (an increase of 34%).

To aid the visualization of the newly predicted genes and assess 
the quality of the transcript boundaries, we extracted from  
all the samples the reads containing a spliced leader sequence 
and poly(A) genomic tract of >9 bases. The spliced leader  
sequence is present at the beginning of all mature trypano-
some transcripts and can be used to determine the exact 5’  
boundary of the gene. The poly(A) genomic tracts are often 
present in intergenic regions and can help to determine the 3’  
gene boundaries. It is useful to note that the script we used 
to select the poly(A) genomic tracts also selects reads with 
poly(A) mRNA tails. However, we did not distinguish between  
poly(A) mRNA tails or poly(A) genomic tracts as both are  
useful to define gene boundaries57.

Quality control
The RNA-seq reads were aligned to the TREU927 refer-
ence genome, and the numbers of fragments mapping to our  
assembled gene list were computed. We evaluated the quality 
of our dataset at several levels. First, we used multidimen-
sional scaling (MDS) to visualise the similarity between the  
different RNA-seq samples (Figure 2). The MDS analyses 
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confirmed the high reproducibility of all biological replicates  
that cluster closer together within each sample type than 
between sample types. We also evaluated the reliability of our  
dataset by visualizing the read coverage of the only two 
known intron-containing genes in the T. brucei genome: 
Tb927.3.3160 (Nuclear poly(A) polymerase 1) and Tb927.8.1510  
(ATP-dependent RNA helicase DBP2B). The visualisations 
in Figures 3 and Figures 4 show that the intron containing 
regions of the two genes have a sudden drop with little or no  
coverage in the polysomal samples (yellow tracks) relative to 
the total and sub-polysomal samples (blue and purple tracks)  
in both the BSF and PCF samples.

Comparison with previous work
We compared our results with those of Antwi et al.12 that 
describes a similar approach to that used in this study. We first  
analyzed our dataset by counting reads aligned to coding 
sequence regions (CDS) only. After read normalization in edgeR, 

we computed the percentages of transcripts bound by the poly-
some for each gene. These values were then corrected for the  
relative proportions of mRNA found in polysome fractions  
(70%) and sub-polysomal fractions (30%) to mimic the analy-
sis pipeline described in 7 as closely as possible. The percentage 
of transcripts bound by polysomes from our study was then  
compared with those reported in Table S1 of 7 (Figure 5). 
The comparison showed a stronger correlation in the PCF life  
stage (R2=0.92) than in the BSF life stage (R2=0.71).

Bias correction
Before further analysing our datasets, we examined GC con-
tent bias and length bias in our read counts as those have been 
reported to affect RNA-seq experiments42,58,59. The data in  
(Figure 6 and Figure 7) show that GC content and length biases 
affect our dataset in a sample-specific way, especially between 
the sub-polysomal samples (green) relative to the polysomal 
(blue) and total (grey) samples. We corrected the read counts  

Figure 1. Experimental design. Cycloheximide-treated cells are lysed by detergent and their contents separated by centrifugation  
through a sucrose gradient. A representative 254 nanometer (nm) absorbance trace for nucleic acids in a Bloodstream Form (BSF)  
lysate density gradient is shown, normalized to the absorbance of a blank gradient. The earliest fractions contain the sub-polysomal 
fraction and the latest fractions contain the polysomal fraction. Free monosomes (80S) and ribosomal subunits (40S and 60S) are 
indicated with arrows. The messenger RNA (mRNA) transcripts from total, sub-polysomal and polysomal RNA were purified on immobilized  
oligo-dT for RNA sequencing (RNA-seq).
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for these biases and normalized the read counts using the  
conditional quantile normalization method implemented in the  
cqn R package42.

Differential abundance analysis
Before proceeding to the differential abundance analysis, we 
visualized the whole dataset with a dimensionality reduction  
technique. Using an ANOVA-like test implemented in edgeR, 
we found transcripts that are differentially abundant between 

any of the groups, without biasing before-hand which groups 
might be different. We then took the median value of each  
biological replicate for each gene and applied a radial visu-
alization plot that uses a polar coordinate system to visual-
ize the dataset. Sample types are like hours on the clock-face 
(i.e. related to the angle of the polar coordinate system) and the  
orthogonal axis (i.e. the distance from the centre) relates to the 
relative abundance of a gene across the samples. This analysis  
showed a strong signature for the BSF and PCF sub-polysomal 

Figure 2. Dimensionality reduction. The output of a multidimensional scaling analysis of the top 500 transcripts for: B_tot_1-3 = 
Bloodstream Form (BSF) total messenger RNA (mRNA) from samples 1-3; B_sub_1-3 = BSF sub-polysomal mRNA from samples 1-3; B_pol_1-
3 = BSF polysomal mRNA from samples 1-3; P_tot_1-3 = Procyclic Form (PCF) total mRNA from samples 1-3; P_sub_1-3 = PCF sub-polysomal 
mRNA from samples 1-3; P_pol_1-3 = PCF polysomal mRNA from samples 1-3.
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Figure 3. Genome coverage for Tb927.3.3160. For the intron containing gene Tb927.3.3160 (Nuclear poly(A) polymerase 1) the figure 
shows the genome coverage for the total (TOT), polysomal (POL), and subpolysomal (SUB) samples (biological replicates 1 to 3) of the 
bloodstream (BS) and procyclic (PC) form life stages. The figure also reports the genome coverage of the Splice Leader (SL) and poly(A) 
mRNA tails and/or poly(A) genomic tract (PA) containing reads assembled from the samples. Also shown are the ribosome profiling reads 
for the Bloodstream Form (RiboBSF) and Procyclic Form (RiboPCF) life stages as described in Vasquex et al. 2014. The last two genomic 
tracks report the peptide identifications for new predicted open reading frames (PEP-new) and for all the open reading frames (PEP-all) in 
TritrypDB. The maximum height of each of the gene tracks is reported on the top left of each track. The top of the figure shows an ideogram 
of the gene structures. The three grey genomic tracks at the top report ATG codons in green and stop codons in red.
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Figure 4. Genome coverage for Tb927.8.1510. For the intron containing gene Tb927.8.1510 (ATP-dependent RNA helicase DBP2B) the 
figure shows the genome coverage for the total (TOT), polysomal (POL), and subpolysomal (SUB) samples (biological replicates 1 to 3) of 
the bloodstream (BS) and procyclic (PC) form life stages. The figure also reports the genome coverage of the Splice Leader (SL) and poly(A) 
mRNA tails and/or poly(A) genomic tract (PA) containing reads assembled from the samples. Also shown are the ribosome profiling reads 
for the Bloodstream Form (RiboBSF) and Procyclic Form (RiboPCF) life stages as described in Vasquex et al. 2014. The last two genomic 
tracks report the peptide identifications for new predicted open reading frames (PEP-new) and for all the open reading frames (PEP-all) in 
TritrypDB. The maximum height of each of the gene tracks is reported on the top left of each track. The top of the figure shows an ideogram 
of the gene structures. The three grey genomic tracks at the top report ATG codons in green and stop codons in red.
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Figure 5. Comparison of the polysomal transcripts between this study and that of Antwi et al.12. The proportions of messenger 
RNA (mRNA) transcripts (blue circles) found in polysomal fractions in 7 (y=axis) and in this study (x-axis) in Procyclic From (PCF, left plot) and 
Blood Stream From (BSF, right plot) samples. The Pearson correlation coefficients (r2) are 0.90 and 0.71, respectively.

Figure 6. GC bias. A plot of gene transcript guanine-cytosine (GC) content percentage (x-axis) versus the log2 Reads Per Kilobase of 
transcript, per Million mapped reads (RPKM) estimated bias effect (y-axis) of the bloodstream (B, solid lines) and procyclic (P, dashed lines) 
samples. The blue lines plot the sub-polysomal (sub) samples, the green lines plot the polysomal (pol) samples and the grey lines plot total 
(tot) sample bias effects.
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samples, where many transcripts showed the greatest differ-
ential abundance relative to all of the other samples (Figure 8,  
blue and orange gene dots).

To try to gain insight into this signature, we performed a clus-
ter analysis. We first determined the optimal number of clus-
ters (n=4) with the elbow approach (Figure 9), and then  
applied a k-means clustering algorithm to divide our data-
set into 4 clusters (Extended data: Table 360). Cluster 1: gene  
transcripts that are more abundant in PCF versus BSF sam-
ples. Cluster 2: gene transcripts that are more abundant in BSF 
and PCF sub-polysomal samples than in all other samples.  
Cluster 3: gene transcripts that are more abundant in BSF ver-
sus PCF samples. Cluster 4: gene transcripts that are less 
abundant in BSF and PCF sub-polysomal samples than in all  
other samples. This clustering analysis confirmed the pres-
ence of a group of genes (Cluster 2, n= 3356) with the highest 
read counts in the BSF and PCF sub-polysomal samples relative  
to all other samples (Figure 10).

To assign possible biological functions to the clusters, we 
performed a GO-term enrichment analysis across the four  
clusters. We only retained GO terms that were enriched in at 
most two of the four clusters, and those with false discovery 
rates of >1%. This analysis, visualized in (Figure 11), showed  

that the transcripts in Cluster 2 (C2) are highly enriched for 
those encoding mRNA binding proteins. Interestingly, the aver-
age half-life of the transcripts in Cluster 2 are the shortest in  
the BSF and the PCF life stages, when compared to the mRNA 
half-lives of the transcripts in the other clusters (Table 1  
and Figure 12). We then asked if any of the clusters are par-
ticularly enriched for the long non-coding genes identified  
in 31 and found they are mostly enriched in Cluster 2 (Table 2).  
Cluster 2 also has the highest number of two other classes of 
non-coding mRNAs: the snoRNAs and H/ACA-like snoRNAs  
(Table 2).

We then focused on the analysis of the transcripts enriched in 
the sub-polysomal samples. We created two models to test for  
differential abundance between the sub-polysomal and poly-
somal samples in the BSF (Extended data: Table 460) and 
PCF (Extended data: Table 560) life stages. As illustrated in  
Figure 13, several long non-coding genes are more abundant 
in the sub-polysomal samples with respect to the polysomal  
samples, including the grumpy transcript (Figure 14) that sits 
at the 5’ end of RBP7A (Tb927.10.12080) and has been shown 
to be important for the progression from the slender form  
to the stumpy form of the parasite26. The grumpy transcript 
made us wonder which other sub-polysome enriched transcripts  
might have a lncRNA at the 5’ end and be associated with 

Figure 7. Length bias. A plot of gene transcript length (log2 kilobase) along the x-axis versus the estimated log2 Reads Per Kilobase of 
transcript, per Million mapped reads (RPKM) bias effect (y-axis) of the bloodstream (B, solid lines) and procyclic (P, dashed lines) samples. 
The blue lines plot the sub-polysomal (sub) samples, the green lines plot the polysomal (pol) samples and the grey line plots total (tot)  
sample bias effects.
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this life stage transition. We identified two candidate genes: 
RBP10 (Tb927.8.2780) with the lncRNA KS17gene_1749a  
(Figure 15) and REG9.1 (Tb927.11.14220) with the lncRNA 
KS17gene_4295a (Figure 16), both of which have been pre-
viously associated with the transition between the BSF  
and PCF life stages61,62. We then asked which other genes, 
involved in RNA processing, have a 5’ lncRNA that is more  
abundant in the sub-polysome samples. To this aim, we cre-
ated a new model to test for differential abundance between 
sub-polysomal and polysomal samples (mixed BSF and PCF).  
After extracting the lncRNAs that are more abundant in the sub-
polysomal samples (grumpy-like lncRNAs) we then reported 
the genes at their 3’ ends and describe these as “grumpy-like  
genes”. Finally, we intersected these grumpy-like genes 
with a list of 322 potential post-transcriptional regulators in  
T. brucei63 to identify 27 new proteins that may contribute to  
T. brucei life stage transitions (Extended data: Table 660).

Identification of new protein coding genes
We were interested in evaluating whether there is proteomic 
evidence for the new hypothetical protein-coding genes  

identified in our dataset. To achieve this, we analyzed our protein  
half-life dataset64 by running MaxQuant with a database of 
open reading frames (ORFs) for the TREU927 genome down-
loaded from TryTripDB. The genomic coordinates of the  
ORF peptides were then intersected with the genomic coordi-
nates of the hypothetical new protein coding genes. Further, 
we filtered out unannotated genes in the main 11 chromosomes  
of T. brucei, without a splice leader site and without ribo-seq  
data. This analysis led to the identification of 11 new hypo-
thetical protein coding genes reported in Extended data:  
Table 760.

As examples, two of these hypothetical protein coding genes 
(TRY.375 and MSTRG.94) are described further.

TRY.375
The start and end of the putative gene were designated at  
Tb927_07_v5.1:828803.. 830064 by Spliced Leader (SL)/Poly-A 
(PA) mapping. The putative TRY.375 gene (Figure 17) con-
tains a predicted open reading frame of 522 base pairs encoding 
for a protein of 173 amino acids (19.51 kDa). The TRY.375  

Figure 8. Radial Visualization. A plot from the RadViz algorithm applied to the experimental samples arrayed uniformly around the 
circumference of a circle. Each gene (dots) is plotted on the interior of the circle such that the distance of the dot on a line from the 
circumference to the centre is proportional to the gene counts. The dot is colour coded according to the sample where it has the maximum 
read count value. P = procyclic form, B = bloodstream form, sub = sub-polysomal transcripts, pol = polysomal transcripts, tot = total 
transcripts.
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protein product is predicted to have an uncleaved signal pep-
tide and three transmembrane domains. Blastp analysis of 
the protein product returned low percentage identity (<50%) 
matches with genes in T. grayi (DQ04_00451000), T. conorhini  
(accession: XP_029230363.1) and T. theileri (TM35_
000192250). Synteny analysis of the TRY.375 locus performed 
at TryTripDB revealed another gene (TevSTIB805.7.3380) in 
the T. evansi genome with 100% homology with the predicted 
TRY.375 gene product. Also, a tblastn search of the TRY.375  
predicted gene identified 2 more hits with 100% homol-
ogy in the genomes of T. brucei 427_2018, 427 (Tb427) and  
T. brucei gambiense DAL972 (Tbg972), corresponding to unan-
notated regions in these genomes. We propose that TRY.375 is a  
novel transmembrane-protein coding gene present in T. brucei  
and T. evansi.

MSTRG.94
Peptides corresponding to potential new gene MSTRG.94  
(Figure 18) mapped with high confidence to 6 regions within 
the span Tb927_02_v5.1:592500..617500. Investigation of 
this section of chromosome 2 revealed it is highly repetitive  
and contains 6 copies of a 65kDa Invariant Surface Glyco-
protein gene with a pairwise protein Identity computed by  
Clustal Omega between 73% and 99%. This suggests that 
what had previously been assumed to be untranslated inter-
genic regions of DNA may in fact encode for protein. SL and  
PA mapping allowed us to define 6 MSTRG.94 gene  
boundaries as described in Extended data: Table 760. All 
of these putative gene regions were identical and we have  
designated them MSTRG.94_1 through MSTRG.94_6. The 
putative MSTRG.94 genes contain a predicted ORF of 378  

Figure 9. Determining the optimal number of clusters. A plot of the number of clusters tested (K) on the x-axis and the clustering 
distortion score (the sum of square distances from each point to its assigned cluster center) on the y-axis. The figure also displays the 
amount of time needed to train the clustering model per K as a dashed green line. If the line chart resembles an arm, then the “elbow” (the 
point of inflection on the curve) is a good indication that the underlying model fits best at that point (ttps://www.scikit-yb.org/en/latest/api/
cluster/elbow.html).
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base pairs encoding for a protein of 125 amino acids (14.17 
kDa). The predicted protein does not contain any transmem-
brane domains or signal peptides. A tblastn search with the  
ORF sequence against trypanosome genomes revealed match-
ing sequences in the genomes of Tb427 and T. evansi. As 
with Tb927, the sequences appear between copies of 65kDa  
Invariant Surface Glycoprotein genes in chromosome 2. In 
Tb427 the sequences are annotated as hypothetical proteins 
and in T. evansi as unspecified products, while in Tbg972 the  
regions are unnanotated.

Discussion
In this paper we present RNA-seq data on the total, polyso-
mal and sub-polysomal mRNA content of T. brucei bloodstream  
and procyclic form life stages. Comparison with similar experi-
ments performed earlier by Antwi et al.12 showed better  
experimental reproducibility between PCF life stage data 
(r2=0.9) than BSF life stage data (r2=0.7) (Figure 5). A possible 
source of discrepancy may be different cell culture protocols for  
the BSF cells. Nevertheless, our dataset showed very good  
reproducibility (Figure 2), and we were successful in identifying 

Figure 10. Cluster visualization. A heatmap of the normalized gene count values for the biological replicates (x-axis) against gene 
identifications (IDs, y-axis). The figure uses three colour codes (colour bar, top right) to visualize the intensity of the normalized read 
counts (red - highest, gray - middle, blue - lowest). The biological replicates are listed in the format of [B/P]_[tot/pol/sub]_[1/2/3] where B: 
bloodstream form, P: procyclic form, tot: total RNA sample, pol: polysomal sample, sub: subpolysomal sample, 1,2,3: biological replicate 
identifiers.
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a pool of efficiently transcribed and spliced mRNAs. This  
is demonstrated by the virtual absence of reads covering the 
intron regions of the two experimentally validated intron  
containing genes (Figure 3 and Figure 4)65.

By using clustering and dimensionality reduction tech-
niques (Figure 8 and Figure 10), we were able to identify the  
sub-polysome samples as the most diverse in our dataset. In 

particular, we found the presence of several long non-coding  
mRNAs in the sub-polysomal fractions of both BSF and PCF 
samples (Extended data: Table 360). This class of mRNA has  
been overlooked in T. brucei until recently, and one particular 
long non-coding mRNA (grumpy) has been shown to regulate  
the transformation from the slender to the stumpy life stage of 
the parasite31. Interestingly, the RNA-binding protein RBP10 
(Tb927.8.2780), that has been shown to bind mRNAs and pro-
mote their degradation, acts as a molecular switch whereby  
RBP10 expression in BSF causes differentiation to PCF, while 
the overexpression in PCF causes differentiation to BSF61. 
While RBP10 itself was not found in our sub-polysome 
enriched transcript list, the lncRNA (KS17gene_1749a) which is  
predicted to be at the 5’ end of RBP10 may have a similar reg-
ulatory function as the grumpy lncRNA transcript. Therefore,  
we have assembled a list of other putative RNA regulatory pro-
teins that may be of interest for those working on T. brucei  
life stage transitions (Extended data: Table 660).

It should be noted that several lncRNAs are located next to 
other annotated genes in the genome. We speculate that those  
lncRNAs might represent transcript isoforms of genes that are 

Figure 11. GO term enrichment analysis. A heatmap of the -log10 p-value of the Gene Ontology (GO) term enrichment test. The clusters 
are plotted in the x-axis and the top enriched GO terms on the y-axis. The -log10 p-value is colour coded according to the colormap on the 
bottom-right of the plot. The GO terms enriched in >2 clusters have been removed. The cluster C1 (underrepresented in sub-polysomal 
samples) has been removed from the figure for visualization as it reports the longest list of enriched GO terms (n=41). C2: Cluster 2, genes 
with the highest gene counts in the Bloodstream From (BSF) and Procyclic Form (PCF) sub-polysomal samples. C3: Cluster 3, genes that are 
more highly present in BSF samples with respect to PCF samples. C4: Cluster 4, genes with a lower abundance in the sub-polysomal BSF and 
PCF samples with respect to all the other samples.

Table 1. Half life report. Median half-lives 
for each cluster of messenger RNA (mRNAs) 
as extracted from Antwi et al.12.

Cluster half-life(PCF) half-life(BSF)

4 27.0 14.3

1 21.0 10.8

2 15.0 10.6

3 17.0 11.6
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actively regulated; the lncRNAs themselves might be retained  
and/or removed from a transcript to promote/decrease tran-
script stability. The excised lncRNA might then be targeted for 
degradation, and this could be the reason why the lncRNAs  
are highly abundant in the sub-polysomal fraction. This  

hypothesis might also explain why the shortest half-life mRNAs 
are more abundant in the sub-polysome fractions. Once a 
lncRNA has been excised from the parent transcript, both the 
lncRNA and the parent transcript may be targeted for degra-
dation. In any case, we anticipate that the study of lncRNAs 
transcripts that are more abundant in the sub-polysomal frac-
tion may uncover new mechanisms of transcript stability and  
regulation in T. brucei. To facilitate such studies and to short-
list candidate genes for further experiments, we provided a table 
of protein coding genes involved in mRNA processing with 
the closest lncRNA that is more abundant in the sub-polysome  
fractions (Extended data: Table 560).

Another class of RNA we found to be enriched in the  
sub-polysomal fractions are snoRNAs. The presence of this 
class of RNA in the sub-polysomal fraction might also be 
explained by a degradation mechanism. For example, snoRNAs  
guide the peculiar trypanosome rRNA maturation events, facili-
tating the methylation and pseudouridylation modification of  
rRNA66,67. Because polyadenylation by snoRNA is a way of 
marking the RNA for degradation in yeast and humans68,69, it  

Figure 12. Transcript half-life. Boxplots of messenger RNA (mRNA) half-life in minutes (y-axis) for the genes assigned to the clusters 
reported in the x-axis for the Bloodstream From (BSF, red) and Procyclic Form (PCF, blue) life stages. 1: Cluster 1, transcripts underrepresented 
in BSF and PCF sub-polysomal samples, 2: Cluster 2, genes with the highest read counts in the BSF and PCF sub-polysomal samples 3: 
Cluster 3, genes that are more highly present in BSF samples with respect to PCF samples; 4: Cluster 4, genes with a lower abundance in 
the sub-polysomal BSF and PCF samples with respect to all the other samples.

Table 2. Non coding mRNA counts. The 
number of Small nucleolar RNAs (snoRNAs), 
H/ACA-like containing box snoRNAs (H/ACA-like 
snoRNAs ) and long non-coding RNAs (lncRNAs) 
identified in each cluster.

Cluster snoRNAs H/ACA-like 
snoRNAs

lncRNAs

1 17 5 405

2 180 43 473

3 66 12 330

4 20 6 206
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is possible that a similar mechanism acts in T. brucei, and that 
our poly-A enrichment step has captured this class of RNAs  
before they have been targeted to the exosome for degradation70.

Finally, we hope that our dataset will be useful for the  
annotation of the T. brucei genome, as demonstrated by the  
identification of 30 new hypothetical protein-coding genes.

Figure 13. Sub-polysome abundance test. The volcano plots report the log2 fold change (logFC) on the x-axis and the minus log10 of 
the false discovery rate (log_FDR) on the y-axis obtained from the comparison of the sub-polysomal samples with the polysomal samples 
for Bloodstream From (BSF, A) and Bloodstream From (PCF, B) samples. Blue dots highlight the long non-coding RNAs (lncRNA), red dot 
highlights the grumpy gene described Guegan et al.31, and grey dots highlight the rest of the genes in the sample.
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Figure 14.  For the grumpy gene KS17gene_3137a the figure shows the genome coverage for the total (TOT), polysomal (POL), 
and subpolysomal (SUB) samples (biological replicates 1 to 3) of the bloodstream (BS) and procyclic (PC) form life stages. The 
figure also reports the genome coverage of the Splice Leader (SL) and poly(A) mRNA tails and/or poly(A) genomic tract (PA) containing 
reads assembled from the samples. Also shown are the ribosome profiling reads for the Bloodstream Form (RiboBSF) and Procyclic Form 
(RiboPCF) life stages as described in Vasquex et al. 2014. The last two genomic tracks report the peptide identifications for new predicted 
open reading frames (PEP-new) and for all the open reading frames (PEP-all) in TritrypDB. The maximum height of each of the gene tracks 
is reported on the top left of each track. The top of the figure shows an ideogram of the gene structures. The three grey genomic tracks at 
the top report ATG codons in green and stop codons in red.
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Figure 15. For the long non coding RNA KS17gene_1749a at the 5’ of the Tb927.8.2780 (RNA-binding protein RBP10) gene, the 
figure shows the genome coverage for the total (TOT), polysomal (POL), and subpolysomal (SUB) samples (biological replicates 
1 to 3) of the bloodstream (BS) and procyclic (PC) form life stages. The figure also reports the genome coverage of the Splice Leader 
(SL) and poly(A) mRNA tails and/or poly(A) genomic tract (PA) containing reads assembled from the samples. Also shown are the ribosome 
profiling reads for the Bloodstream Form (RiboBSF) and Procyclic Form (RiboPCF) life stages as described in Vasquex et al. 2014. The last 
two genomic tracks report the peptide identifications for new predicted open reading frames (PEP-new) and for all the open reading frames 
(PEP-all) in TritrypDB. The maximum height of each of the gene tracks is reported on the top left of each track. The top of the figure shows 
an ideogram of the gene structures. The three grey genomic tracks at the top report ATG codons in green and stop codons in red.
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Figure 16. For the long non coding RNA KS17gene_4295a at the 5’ of the Tb927.11.14220 (REG9.1) gene, the figure shows the 
genome coverage for the total (TOT), polysomal (POL), and subpolysomal (SUB) samples (biological replicates 1 to 3) of the 
bloodstream (BS) and procyclic (PC) form life stages. The figure also reports the genome coverage of the Splice Leader (SL) and poly(A) 
mRNA tails and/or poly(A) genomic tract (PA) containing reads assembled from the samples. Also shown are the ribosome profiling reads 
for the Bloodstream Form (RiboBSF) and Procyclic Form (RiboPCF) life stages as described in Vasquex et al. 2014. The last two genomic 
tracks report the peptide identifications for new predicted open reading frames (PEP-new) and for all the open reading frames (PEP-all) in 
TritrypDB. The maximum height of each of the gene tracks is reported on the top left of each track. The top of the figure shows an ideogram 
of the gene structures. The three grey genomic tracks at the top report ATG codons in green and stop codons in red.
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Figure 17. For the new predicted protein coding gene TRY.375, the figure shows the genome coverage for the total (TOT), 
polysomal (POL), and subpolysomal (SUB) samples (biological replicates 1 to 3) of the bloodstream (BS) and procyclic (PC)  
form life stages. The figure also reports the genome coverage of the Splice Leader (SL) and poly(A) mRNA tails and/or poly(A)  
genomic tract (PA) containing reads assembled from the samples. Also shown are the ribosome profiling reads for the Bloodstream 
Form (RiboBSF) and Procyclic Form (RiboPCF) life stages as described in Vasquex et al. 2014. The last two genomic tracks report the  
peptide identifications for new predicted open reading frames (PEP-new) and for all the open reading frames (PEP-all) in TritrypDB.  
The maximum height of each of the gene tracks is reported on the top left of each track. The top of the figure shows an ideogram of  
the gene structures. The three grey genomic tracks at the top report ATG codons in green and stop codons in red.
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Figure 18. For the new predicted protein coding gene MSTRG.94, the figure shows the genome coverage for the total (TOT), 
polysomal (POL), and subpolysomal (SUB) samples (biological replicates 1 to 3) of the bloodstream (BS) and procyclic (PC) form 
life stages. The figure also reports the genome coverage of the Splice Leader (SL) and poly(A) mRNA tails and/or poly(A) genomic tract 
(PA) containing reads assembled from the samples. Also shown are the ribosome profiling reads for the Bloodstream Form (RiboBSF) and 
Procyclic Form (RiboPCF) life stages as described in Vasquex et al. 2014. The last two genomic tracks report the peptide identifications for 
new predicted open reading frames (PEP-new) and for all the open reading frames (PEP-all) in TritrypDB. The maximum height of each of 
the gene tracks is reported on the top left of each track. The top of the figure shows an ideogram of the gene structures. The three grey 
genomic tracks at the top report ATG codons in green and stop codons in red.
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Data availability
Underlying data
All FASTQ files data are deposited at the NCBI SRA  
database71 under the bioproject accession number PRJNA634997

Analysis pipeline, links to the raw data and code used to  
generate the paper figures are available at https://github.com/
mtinti/polysome, reproducible using the mybinder badge in  
GitHub and archived in Zenodo.

Zenodo: mtinti/polysome: pre-submission. http://doi.org/10.5281/
zenodo.423516072 

This project contains the following data:

-	� (B,P)_(pol, sub, tot)_(1,2,3)

-    �counts.txt (The read counts for the genes)

-    �counts_CDS.txt (The read counts for the gene coding 
sequences)

-	� Figures (The folder containing the figures of the paper)

-	� Figures_Paper_def.ipynb (The jupyter notebook  
producing the figures of the paper)

-	� InData

-    �GC_content_927.txt (list of guanine-cytosine content 
values of the genes in T. brucei)

-    �GS_gene_list.txt (list of the hypothetical long non-
coding mRNAs in T. brucei according to Guegan F.  
et al. 2020)

-    �PTR.txt (list of the genes with a predicted gene 
expression regulation effect in T. brucei according to  
Erben, E.D., et al. 2014)

-    �PolisomeLiterature

-	� BSF.csv (The supplementary Table 5 of Antwi 
et al. 2016 for the bloodstream life stage)

-	� GeneByLocusTag_Summary.txt ( A map-
ping dictionary to update the gene ids in the  
supplementary Table 5 of Antwi et al. 2016)

-	� PCF.csv (The supplementary Table 5 of  
Antwi et al. 2016 for the procyclic life stage)

-    �Proteomics

-	� peptides_bsf_trim.zip (peptide identification 
output of MaxQuant in the bloodstream life 
stage)

-	� peptides_pcf_trim.zip (peptide identifica-
tion output of MaxQuant in the procyclic life 
stage)

-    �TriTrypDB-46_TbruceiTREU927.gff (generic feature 
format file downloaded from TriTrypDB)

-    �TriTrypDB-46_TbruceiTREU927_GO.gaf (Gene  
Ontology file downloaded from TriTrypDB)

-    �TriTrypDB-46_TbruceiTREU927_GO2.gaf (Gene 
Ontology file modified and used as input for 
GOATOOLS)

-    �go-basic.obo (Ontology file downloaded from http://
geneontology.org/docs/download-ontology/)

-    �goterm_enrich.txt (list of enriched GO terms in the  
gene clusters)

-    �mRNA_Half_Life

-	� mRNAhl_lookup.txt ( A mapping dictionary 
to update the gene ids in the supplementary  
Table 5 of Antwi et al. 2016)

-	� mrnaBSFhl.txt (list mRNAs half-lives for 
bloodstream form as reported in supplementary 
Table 5 of Antwi et al. 2016)

-	� mrnaPCFhl.txt (list mRNAs half-lives for 
procyclic form as reported in supplementary  
Table 5 of Antwi et al. 2016)

-    �ribo_counts_927.txt (Read counts for the re-analysis  
of the ribo-seq dataset)

-	� Tables (The folder containing the tables of the paper)

-	� environment.yml (The conda environment file that 
lists the packages to reproduce the analysis on  
mybinder)

-	� make_pipline2.py (python script to assemble the  
rna-seq analysis pipeline)

-	� multiQC.ipynb (The jupyter notebook that runs the  
quality control )

-	� multiqc_config.yaml (The multiQC configuration file )

-	� multiqc_fastqc.yaml (The multiQC configuration file  
for the fastqc package )

-	� mylib

-    �extract_barcodes_def2.py (The python script to 
extract the RNA-seq reads containing the splice leader  
sequences or the poly-A tracts)

-	� polysome_mqc (folder containg the multiQC output 
files)

-	� package_versions.txt (a text file listing all the versions of 
the software used for the analysis)

-	� postBuild (configuration files for mybinder)

-	� tb927_3_ks_st_sc_st_tr.gtf (Gene Transfer annota-
tion file of T. brucei listing the new transcribed regions  
identified in this work)

-	� tb927_5.fa (Genomic sequences of T. brucei downloaded 
from TriTrypDB)
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-	� tb927_5.fa.fai (index file Genomic sequences of  
T. brucei)

-	� tb927_5.gtf (Gene Transfer annotation file of  
T. brucei downloaded from TriTrypDB)

-	� templates

-    �scallop.sh (the bash script to run scallop for the  
identification of new transcribed regions))

-    �template_rnaseq.sh (the bash script to run the  
RNA-seq analysis pipeline)

-    �trinity_template.sh (the bash script to run trinity for  
the identification of new transcribed regions)

-	� README.md (the github readme file)

-	� utilities.py (python script with helper functions for  
the data analysis )

-	� vars5.txt (list the input parameters for the make_pipline2.
py file)

-	� wcar.png (Wellcome Centre for Anti-Infectives  
Research logo)

The code and the data used to generate the paper figures that  
visualise the RNA-seq coverage are available at https://github.
com/mtinti/polysome_coverage, https://github.com/mtinti/poly-
some, reproducible using the mybinder badge in github and  
archived in zenodo.

Zenodo: mtinti/polysome_coverage: pre-submission. http://doi.
org/10.5281/zenodo.442834373 

This project contains the following data:

-	� (B/P)_(pol/sub/tot)_(1/2/3)_sorted_pc_bg.bed (bed graph 
file for the coverage of the RNA-seq samples)

-	� Figures_Paper_Coverage.ipynb (The jupyter notebook 
that produce the coverage images )

-	� README.md (the GitHub readme file)

-	� Tb927.8.1510_paper_figures.png (coverage image for 
the Tb927.8.1510 gene)

-	� all_927_F_plus_R_SL.bed (bed graph file format for 
the coverage of the reads containing the spliced-leader 
sequences)

-	� all_F_plus_R_PoliA.bed (bed graph file format for  
the coverage of the reads containing the poli-A tract)

-	� all_pepe.bed (bed graph file format for the coverage  
of the peptides identified with mass spectrometry)

-	� environment.yml (The conda environment file that 
lists the packages to reproduce the coverage analysis  
on mybinder)

-	� new_genes.bed (bed graph file format for the coverage  
of the peptides identified with mass spectrometry for  
new predicted protein coding gene)

-	� package_versions.txt (a text file listing all the versions  
of the software used for the analysis)

-	� riboBSF_927.bed (bed graph file format for the  
coverage of ribo-seq samples in the bloodstream  
samples)

-	� riboPCF_927.bed (bed graph file format for the  
coverage of ribo-seq samples in the procyclic sample)

-	� svist4getConf (configuration folder for the svist4get 
package)

-	� tb927_3.gff (Gene Transfer annotation file of  
T. brucei downloaded from TriTrypDB)

-	� tb927_5.fa (Genomic sequences of T. brucei downloaded 
from TriTrypDB)

-	� tb927_5.fa.fai (index file Genomic sequences of  
T. brucei downloaded from TriTrypDB)

-	� tb927_5.gtf (Gene Transfer annotation file of T. brucei 
downloaded from TriTrypDB and supplemented with the 
new discovered expressed sequences)

-	� util.py (python script with helper functions for the  
gene coverage analysis )

wcar.png (Wellcome Centre for Anti-Infectives Research logo)

The QC output is avaiable at github https://github.com/mtinti/
polysome_qc, visualizable at https://polysome-qc.onrender.com  
and archived in zenodo.

Zenodo: mtinti/mtinti-polysome_qc. https://doi.org/10.5281/zen-
odo.423521274 

This project contains the following data:
-	� report.html (the home page of the visualization report)

-	� report_data (the configuration folder congaing the  
report data)

Licence: MIT.

Extended data
Zenodo: mtinti/ polysome_extended: v0.1. https://doi.org/10.5281/
zenodo.452613760

This project contains the following extended data:
·	� Table 3. Cluster analysis. Data used for the cluster 

analysis. The first column reports the gene identifi-
cation number and 18 columns with the normalized  
values for the biological replicates in the format of  

Page 25 of 38

Wellcome Open Research 2021, 6:36 Last updated: 05 JUL 2021

https://github.com/mtinti/polysome_coverage
https://github.com/mtinti/polysome_coverage
https://github.com/mtinti/polysome
https://github.com/mtinti/polysome
http://doi.org/10.5281/zenodo.4428343
http://doi.org/10.5281/zenodo.4428343
https://github.com/mtinti/polysome_qc
https://github.com/mtinti/polysome_qc
https://polysome-qc.onrender.com/
https://doi.org/10.5281/zenodo.4235212
https://doi.org/10.5281/zenodo.4235212
https://doi.org/10.5281/zenodo.4526137
https://doi.org/10.5281/zenodo.4526137


[B/P]_[tot/pol/sub]_[1/2/3] were B: bloodstream 
form, P: procyclic form, tot: total RNA sample, pol: 
polysomal sample, sub: subpolysomal sample, 1,2,3:  
biological replicate identifiers. The table also reports 
the predicted cluster identification number (label), a 
binary column reporting whether the gene is identi-
fied or not in the (is_ks), the gene description (desc), a  
binary column reporting whether the gene is anno-
tated as an H/ACA-like snoRNA, a binary column 
reporting whether the gene is annotated as a snoRNA  
and a binary column reporting whether the gene is  
annotated as non-coding (Noncoding) RNA.

·	� Table 4. Polysome/sub-polysome transcript  
differential abundance in BSF cells. Comparison 
between the polysome and sub-polysome samples 
in the bloodstream form life stage: logFC, the log 
fold-change for each gene in the two groups being  
compared. logCPM, the log-average abundance for 
each gene in the two groups being compared. LR, like-
lihood ratio statistic. PValue, exact p-value for differ-
ential expression test. FDR, the p-value adjusted for 
multiple testing with the Benjamini–Hochberg method  
(false discovery rate).

·	� Table 5. Polysome / Sub-polysome Transcript  
Differential Abundance in PCF. Comparison 
between the polysome and subpolysome samples 
in the procyclic form life stage the: logFC, the log- 
abundance ratio, i.e. fold change, for each gene in 
the two groups being compared; logCPM, the log- 
average concentration/abundance for each gene in 
the two groups being compared; LR, likelihood ratio  
statistics; PValue, exact p-value for differential expres-
sion test; FDR, the p-value adjusted for multiple  
testing with the Benjamini–Hochberg method. 

·	� Table 6. Grumpy-Like lncRNA Genes. Compari-
son between the polysome and sub-polysome samples  
for the ‘grumpy-like’ lncRNAs (gene_ks) reporting 
the: logFC, the log fold-change for each gene in the 
two groups being compared. logCPM, the log-average 

abundance for each gene in the two groups being  
compared. LR, likelihood ratio statistic. PValue, exact  
p-value for differential expression test. FDR, the  
p-value adjusted for multiple testing with the  
Benjamini–Hochberg method. The table also shows the 
predicted affected genes (gene_sensitive ) at the 3’ of 
the ‘grumpy-like’ genes and the description (desc) of the 
affected gene and the regulation type (reg_type) reported 
in 63 for potential post-transcriptional regulators in  
T. brucei.

·	� Table 7. New Protein Coding Genes. The ID of 
the new predicted protein coding genes (Gene), the 
number of peptides identified in mass spectrometry  
(Peptides found by MS), the genomic coordinates 
(Coordinates), the gene length in base pairs (Gene 
length), the open reding frame orientation (Orient), the 
coding sequence coordinate (CDS coordinates), the 
open reading frame length in base pairs (ORF length), 
the predicted protein length in amino acid residues  
(Predicted protein length), the predicted protein 
molecular weight in Kilodalton (Predicted protein 
estimated weight), the identification number of other 
genes with high homology with the predicted gene  
(Similar genes), the number of transmembrane 
domain predicted with the Phobius algorithm (Phobius  
predictions), the signal peptide prediction results  
computed with the SignalP 3 algorithm (SignalP 
3.0 predictions) or SignalP 5 algorithm (SignalP 5.0  
predictions), are reported for the new predicted protein  
coding gene manually curated.

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).
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The manuscript by Tinti et al. sought to generate profiles of mRNAs associated with polysomal and 
non-polysomal fractions from the parasitic protozoa “Trypanosoma brucei”; polysomal mRNAs 
indicating those being actively translated and used for protein synthesis. The study compares the 
profiles seen for the two major life forms of “T. brucei” (bloodstream and procyclic) using as 
biological material fractions of cycloheximide-treated cells. Pooled samples consisting of 
polysomal and non-polysomal fractions, separated by sucrose gradient, were submitted to RNA 
extraction, cDNA synthesis and next generation sequencing in order to qualitatively and 
quantitatively define mRNAs (or polyadenylated RNAs) bound or not bound to the polysomes. In 
all, the authors investigated three different samples for each parasite life form: total polyA+ 
mRNAs, sub-polysomal mRNAs and polysomal mRNAs. A large range of bioinformatic tools were 
used to analyze the results and these were also compared with previous published data. 
 
     The data generated by the reported research, with the comparison between polysomal and 
sub-polysomal mRNAs from the two different life forms, expands on previous works assessing 
polysome bound mRNAs in T. brucei, increases the number of experimentally validated and 
mapped mRNAs and identifies and investigates non-coding mRNAs in the sub-polysomal fraction, 
with possible roles in regulation of specific messages. It constitutes an important tool for a large 
number of investigators working on mRNA translation and gene expression regulation in these 
and related protozoa. The approach is especially relevant considering that these are eukaryotes 
with very peculiar mechanisms for regulation of gene expression, with previous evidence 
highlighting a strong role for this regulation during mRNA translation, therefore being model 
organisms for mechanisms targeting regulation of translation. Nevertheless, for publication, the 
manuscript needs improvements regarding several issues, as detailed below. 
 
Abstract:            
            The abstract should be thoroughly revised with an inclusion of more relevant results. As 
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detailed further below, a focus only on the presence of long non-coding RNA in the sub-polysomal 
fraction (stated twice) is misleading since these should be mainly found in this fraction to begin 
with. More relevant results include: the proper identification/confirmation of long non-coding, 
polyadenylated RNAs (with the 5’ SL), with substantial number of reads and their mapping, 
highlighting possible roles regarding the regulation of specific protein coding genes (it is not clear 
by the text to which extent novel lncRNAs were identified, but if so this has to be highlighted as 
well as the association reported between lcnRNAs and neighboring protein coding transcripts); the 
substantial increase of genome loci found to be transcribed, as reported in the main text; and the 
identification of novel hypothetical proteins. 
 
 
Methods: 
       The approach applied in the manuscript was based on several bioinformatic tools and 
computational steps. Some of the tools used are quite old, such as GMAP, but more relevant was 
the use of several computational tools and analyses without a proper justification for their use. For 
example, why did the authors decide to use two different de novo assemblers (Trinity and Scallop) 
for the transcriptomic data? A consensus between the transcript predictions from both tools and 
including prior predictions was then expected, but it is not clear if this is what the authors did and 
should be clarified. At the end of the “de novo” approach, a new genome annotation file was 
generated, but it is not clear if it was used for the final read counts using the “featureCounts” tool 
and this also needs clarification. Regarding the description of the cDNA library preparation, 
important details such as read length and which type of library was employed cannot be found in 
the methods section. Base on the text it is understood that the libraries used were paired-end, but 
then for quality control, the authors mentioned they used RPKM as normalization step, which is 
applicable to single-end libraries. These details need to be better clarified. 
 
     An important point of concern is the use of two different strains, one for each of the two T. 
brucei life forms. No considerations or comments are made on how this can impact on the 
differences found between the same fractions from the two different life forms investigated. To 
what extent could the differences seen between the two life forms, and related to the results from 
figure 5, could be associated with the use of different strains? 
 
Results: 
     The very large number of figures can be a distraction and keep the reader from focusing on 
what is important. The authors should consider reducing those. Some suggestions: Figures 1 is 
not necessary; for Figures 6 and 7, only one representative figure could be kept, or both could be 
removed altogether; Figure 9 also does not need to be shown.   
 
     For validation purposes, wouldn´t it be relevant mentioning or showing the profile of known, 
stage specific genes, which would preferentially be present in the polysomal fractions of either 
bloodstream or procyclic forms? For instance, known surface antigens? 
 
     The authors used as examples on mapping quality control, two T. brucei genes known to have 
introns. However, it is not clear why one should see substantial read coverage for an intron in sub-
polysomal and total RNA samples. It was understood that the work aimed to compare sub-
polysomal or polysomal fractions of presumably cytoplasmic and mature mRNAs, selected 
through their poly-A tails. So, very low or no intron mapping would be expected overall and not 
only for the polysomal fractions. Wouldn’t the presence of introns indicate a substantial amount of 
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precursor or maybe nuclear mRNAs within the sub-polysomal fractions that need to be considered 
somehow? 
 
    A relevant observation from the results shown in Figure 4 is the overlap in the UTRs from the 
Tb927.8.1500 and Tb927.8.1510. How unique is this? Likewise, in Figure 3, for the Tb927.3.3160 
gene, its intron might be associated with poly-A tracts. Again, what does this mean and is it seen 
elsewhere? These issues should be considered in the text. 
 
    The authors mention an enrichment of lncRNAs in cluster 2, composed mainly by sub-polysomal 
mRNAs from bloodstream and procyclic forms. Biologically speaking, isn’t that to be expected, as 
no ribosomes should be attached to non-translatable lncRNAs? The authors propose a mechanism 
where a lncRNA would be part of a transcript, and its presence or absence could define different 
transcript isoforms. But which isoform would be translated, with or without the lncRNA segment? 
In this case would the lncRNA segment be considered a long non-coding RNA? Why would the 
lncRNA have a Spliced Leader and poly-A, as indicated by the results? These issues were discussed 
only superficially in the Discussion. 
 
    The authors also proposes that the location of the segments encoding several lncRNA might 
indicate a role in regulation of neighboring genes. What is the basis for this? Has it been shown 
elsewhere or in Tryps? It seems quite speculative and not much related to this is seen in the 
discussion. 
 
    Finally, it would be nice to have some data regarding the abundance of different functional 
classes of mRNA coding proteins when forms and fractions were compared, however, there is 
nothing on that in the discussion. 
 
 
Discussion: 
    Regarding the discussion, the work has several interesting results, but few of them are 
discussed sufficiently. For instance, the results mention a 34% increment in the number of 
transcribed loci, but there is no consideration regarding this very relevant results in the 
discussion, and no details can be found regarding function and curation of these loci. 
 
Minor Points:

What is the difference between PCA and MDS? Do the axes have weights? This can change 
the interpretation of the result. Why didn’t authors use PCA? 
 

1. 

In the methods, in the sentence “Before computing the fraction of transcripts in polysomes, 
the polysome read counts were divided by 0.7 and the sub-polysome read counts were 
divided by 0.3 …”, shouldn’t the counts be multiplied by 0.7 or 0.3, instead of divided by? 
 

2. 

The following sentence is not understandable and needs to be clarified: "To identify the 
Grumpy Like genes we created a third model to study the differential transcript abundance 
between the sub-polysomal samples (mixed model of BSF and PCF) against the 
subpolysomal samples (mixed model of BSF and PCF)" present at "Sub-polysome / polysome 
differential abundance analysis and Grumpy Like GenesSub-polysome / polysome 
differential abundance analysis and Grumpy Like Genes" topic. 
 

3. 
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The first sentences of the Results section explaining in detail the use and properties of 
cycloheximide are not necessary and can be shortened since the cycloheximide use for 
polysomal gradients is common. 
 

4. 

The statement “The poly(A) genomic tracts are often present in intergenic regions and can 
help to determine the 3’ gene boundaries” needs a reference. 
 

5. 

In various Figure legends the citation of Vasquex (it is Vasquez) et al. 2014 should include 
the reference number from the reference list. 
 

6. 

Figure 8 - put the legend of the figure in the same orders of the sample names in the graph. 
 

7. 

For Figure 10, review the order that the results are shown. It makes no sense having the two 
different sub-polysomal samples followed by the polysomal and total samples from 
procyclics and then polysomal and total samples from bloodstream. Either you alternate 
between each of the procyclic and bloodstream samples or show all procyclic and then all 
bloodstream samples. 
 

8. 

The following sentence needs to be modified “The grumpy transcript made us wonder 
which other sub-polysome enriched transcripts might have a lncRNA at the 5’ end….”. Based 
on the “Grumpy” example, it refers to polysome enriched transcripts which have a sub-
polysome enriched lncRNA at their 5’ end. 
 

9. 

Figure 13 - The legend is confusing. 
 

10. 

In the sentence "Synteny analysis of the TRY.375 locus performed at TryTripDB revealed 
another gene (TevSTIB805.7.3380) in the T. evansi genome with 100% homology with the 
predicted TRY.375 gene product.", the homology concept is misused as it is a binary concept 
bringing the idea of evolutionary relationship, so you cannot have degree of homology 
between two loci of different species. Either they are homologs or re not. The degree of 
similarity or identity should be informed.  
 

11. 

The novel MSTRG.94 gene and neighboring sequences seem to be transcribed only in 
Bloodstream cells and this should be highlighted. 
 

12. 

In the Discussion, the statement “This is demonstrated by the virtual absence of reads 
covering the intron regions of the two experimentally validated intron containing genes” is 
not valid for the sub-polysomal transcripts and should be revised.

13. 
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This is a high-quality manuscript with sound methodology. The manuscript contributes to the 
understanding of mechanisms involved in regulation of a gene expression in T. brucei using 
cultured bloodstream forms and procyclic forms. Conducted bioinformatic analysis of RNS-seq on 
total, sub-polysomal and polysomal mRNA samples led to identification of several long non-coding 
RNAs (lncRNAs) and snoRNAs implicated in regulation of differentiation in T. brucei. In addition 
presented work includes also identification of 30 new hypothetical protein-coding genes 
facilitating further genomic annotation of T. brucei. 
In the host, T. brucei as an extracellular parasite surviving in direct contact with the immune 
system being confronted continuously with the host derived molecules. The latter were shown to 
have various impacts on parasite survival and differentiation. Hence, the parasite and host 
interplay and sensing of the environment play an important part in establishing of the infection. In 
order to make this manuscript more appealing to the wider public, it would be beneficial that 
authors discuss whether similar regulatory mechanisms involved in gene expression, are expected 
to operate during real in-host infection. Can observed in vitro regulatory mechanisms be 
extrapolated to the once existing during infection in the context of parasite differentiation, 
quorum sensing and overall survival?
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In Tinti and co-workers, the authors look for novel coding sequences and potential lncRNAs by 
sequencing total RNA and different polysomal fractions from both PCF and BSF-trypanosome 
forms. The authors found that the grumpy lncRNA (the only lncRNA from T. brucei partially 
characterised so far potentially involved in the regulation of the slender-to-stumpy differentiation) 
is enriched in subpolysomal fractions in both life forms. They then looked for new lncRNAs 
displaying similar polysomal distribution finding a bunch of them associated or in close proximity 
to genes involved in stumpy formation or post-transcriptional regulators suggesting an 
interesting and yet unexplored functional link between them. If this holds true, it would also mean 
that tagging some specific proteins from the endogenous locus - a popular approach in this field - 
(where UTRs are disrupted) may have unforeseen functional consequences. The authors also 
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identified 11 novel protein coding genes. Since both NGS and mass spectrometry rely heavily on 
databases, I find this manuscript a helpful contribution to the continuous curation of the T brucei 
genome. I also celebrate how detailed the Methods section is. I am supportive of publication, 
though make some suggestions for possible improvement of the manuscript. 
 
Major criticism:

lncRNAs: 
The author found that several lncRNA are in close proximity (typically at the 5’-end) to genes 
associated with the transition between the BSF and PCF life stages or potential post-
transcriptional regulators. Is this statically significant? How does it compare to different 
functional gene categories or among developmentally vs non-developmentally-regulated 
genes? The authors show the FC between different fractions but I would like to see how 
levels of the protein-coding gene and its proximal lncRNA vary in PF vs BF. For instance, 
what is going on with the lncRNA immediately upstream of the RBP10 gene in PF? Since it 
seems to be embedded into the 3’UTR of the upstream gene (Tb927.8.2770), is its level 
independently regulated or follow the Tb927.8.2770 pattern? Most of the lncRNAs are found 
in subpolysomal fractions. For the nuclear grumpy it is expected. However, RBP7A seems to 
be cytosolic (also RBP10 for which a subpolysomal lncRNA is apparently linked), so how does 
the author imagine the crosstalk between the coding genes and their proximal lncRNAs?  
 

1. 

In the Discussion, the author hypothesized that the excised lncRNA might be targeted for 
degradation, and this could be the reason why the lncRNAs are enriched in the sub-
polysomal fractions. Fig 15 shows that the lncRNA present upstream of the RBP10 coding 
region is indeed detected in the ribosome profiling data in both PF and BF stages (although 
no peptides detected). In human cells, cytoplasmic lncRNAs may indeed be recruited to 
ribosomes for degradation (PMID: 27090285).1 Can this also apply for T. brucei and what is 
observed are lncRNA that are for instance either nuclear (like grumpy) or on the way to 
ribosomes? The authors should discuss all the possible options and do comment about the 
presence of lncRNA-derived reads on ribosome profiling data.  
 

2. 

Novel proteins: 
Are the novel proteins developmentally regulated? Could the authors go back to the RITseq 
from Alsford et al. and check whether those novel genes are required for proliferation? 

3. 

  
Minor issues:

Is Vasquez et al.; not Vasquex et al. 
 

1. 

The reference labelled as #7 may be the #12?  
 

2. 

In the Discussion, the authors claim that grumpy regulates the transformation from slender 
to stumpy forms; although the cited reference presents very interesting data, it is still 
preliminary. I would rephrase it in order to stress it down

3. 
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The paper by Tinti et al. determined the RNA present in polysomal and sub-polysomal fractions by 
RNA-seq in the two life stages of the trypanosome parasites, PCF and BSF. The study compared 
their data to published ribosome-profilling and to the polysomal mRNA described by the Clayton 
group. This is an important study that detects interesting 5’ lncRNA. They propose an interesting 
hypothesis that part of long transcripts are excised out and moving part of mRNA to the sub-
polysomal mRNA. They also detected snoRNA in the sub-polysomal fractions and their 
interpretation is that these are precursors en-route to be degraded. In addition, they describe new 
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protein coding genes. 
 
Major criticism 
The authors suggested based on the paper present in Archives that the 5’ lncRNA regulates the 
downstream gene (ref 31). However, even in the cited paper, there is no direct evidence that the 
lncRNA regulates the neighboring gene (RBP7A and B genes). There is no evidence that the ncRNA 
affects the expression of the neighboring genes also in this stud. In the cases presented in Fig. 14, 
15, and 16 and especially in Fig. 14, the CDS and the upstream lncRNA are in my eyes individually 
trans-spliced and polyadenylated transcripts. 
So these could be independent entities. The lncRNA may even regulate other transcripts. To 
convince that there is a continuous transcript between the lncRNA and the downstream gene it is 
needed to amplify an RNA with primers coming from both genes that is trans-spliced and 
polyadenylated. Without this experiment, one can not say that the 5’ UTR lncRNA is processed 
from a longer transcript carrying the CDS. 
Regarding the snoRNAs, snoRNA are indeed processed from transcripts that are trans-spliced and 
polyadenylated but are processed by endonucleolytic cleavage. There is no presentation of the 
snoRNA transcript reads to see the sequence of the intergenic regions (between the snoRNAs) so 
is not clear to me what the authors refer to i.e. snoRNA precursors or just snoRNA associated with 
RNP complexes. The association of snoRNAs with complexes from 90 to 60S is expected because 
snoRNAs are involved in ribosome processing and modification and hence are found in large 
processing complexes that are smaller in size compared to polysomes and are special processing 
complexes.  
 
The issues presented above need to be clarified before this paper can be published.
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