231 research outputs found

    Direct Observation of the Dynamics of Latex Particles Confined inside Thinning Water-Air Films

    Get PDF
    The dynamics of micrometer-size polystyrene latex particles confined in thinning foam films was investigated by microscopic interferometric observation. The behavior of the entrapped particles depends on the mobility of the film surfaces, the particle concentration, hydrophobicity, and rate of film formation. When the films were stabilized by sodium dodecyl sulfate, no entrapment of particles between the surfaces was possible. When protein was used as a stabilizer, a limited number of particles were caught inside the film area due to the decreased mobility of the interfaces. In this case, extraordinary long-ranged (>100 ÃŒm) capillary attraction leads to two-dimensional (2D) particle aggregation. A major change occurs when the microspheres are partially hydrophobized by the presence of cationic surfactant. After the foam films are opened and closed a few times, a layer of particles simultaneously adsorbed to the two interfaces is formed, which sterically inhibits any further film opening and thinning. The particles within this layer show an excellent 2D hexagonal ordering. The experimental data are relevant to the dynamics of defects in coating films, Pickering emulsions, and particle assembly into 2D arrays

    Theory of Shape-Shifting Droplets

    Get PDF
    Recent studies of cooled oil emulsion droplets uncovered transformations into a host of flattened shapes with straight edges and sharp corners, driven by a partial phase transition of the bulk liquid phase. Here, we explore theoretically the simplest geometric competition between this phase transition and surface tension in planar polygons and recover the observed sequence of shapes and their statistics in qualitative agreement with experiments. Extending the model to capture some of the three-dimensional structure of the droplets, we analyze the evolution of protrusions sprouting from the vertices of the platelets and the topological transition of a puncturing planar polygon.This work was supported in part by the Engineering and Physical Sciences Research Council (P. A. H.), an Established Career Fellowship from the EPSRC (R. E. G.), and the European Research Council (Grant EMATTER No. 280078 to S. K. S.)

    Mechanisms and Control of Self-Emulsification upon Freezing and Melting of Dispersed Alkane Drops

    Get PDF
    Emulsification requires drop breakage and creation of a large interfacial area between immiscible liquid phases. Usually, high-shear or high-pressure emulsification devices that generate heat and increase the emulsion temperature are used to obtain emulsions with micrometer and submicrometer droplets. Recently, we reported a new, efficient procedure of self-emulsification (Tcholakova et al. Nat. Commun. 2017, 8, 15012), which consists of one to several cycles of freezing and melting of predispersed alkane drops in a coarse oil-in-water emulsion. Within these freeze-thaw cycles of the dispersed drops, the latter burst spontaneously into hundreds and thousands of smaller droplets without using any mechanical agitation. Here, we clarify the main factors and mechanisms, which drive this self-emulsification process, by exploring systematically the effects of the oil and surfactant types, the cooling rate, and the initial drop size. We show that the typical size of the droplets, generated by this method, is controlled by the size of the structural domains formed in the cooling-freezing stage of the procedure. Depending on the leading mechanism, these could be the diameter of the fibers formed upon drop self-shaping or the size of the crystal domains formed at the moment of drop-freezing. Generally, surfactant tails that are 0-2 carbon atoms longer than the oil molecules are most appropriate to observe efficient self-emulsification. The specific requirements for the realization of different mechanisms are clarified and discussed. The relative efficiencies of the three different mechanisms, as a function of the droplet size and cooling procedure, are compared in controlled experiments to provide guidance for understanding and further optimization and scale-up of this self-emulsification process

    Comment on "Faceting and Flattening of Emulsion Droplets: A Mechanical Model".

    Get PDF

    Comment on "Faceting and Flattening of Emulsion Droplets: A Mechanical Model".

    Get PDF

    Remarkably high surface visco-elasticity of adsorption layers of triterpenoid saponins

    No full text
    Saponins are natural surfactants, with molecules composed of a hydrophobic steroid or triterpenoid group, and one or several hydrophilic oligosaccharide chains attached to this group. Saponins are used in cosmetic, food and pharmaceutical products, due to their excellent ability to stabilize emulsions and foams, and to solubilize bulky hydrophobic molecules. The foam and emulsion applications call for a better understanding of the surface properties of saponin adsorption layers, including their rheological properties. Of particular interest is the relation between the molecular structure of the various saponins and their surface properties. Here, we study a series of eight triterpenoid and three steroid saponins, with different numbers of oligosaccharide chains. The surface rheological properties of adsorption layers at the air-water interface, subjected to creep-recovery and oscillatory shear deformations, are investigated. The experiments showed that all steroid saponins exhibited no shear elasticity and had negligible surface viscosity. In contrast, most of the triterpenoid saponins showed complex visco-elastic behavior with extremely high elastic modulus (up to 1100 mN m(-1)) and viscosity (130 N s m(-1)). Although the magnitude of the surface modulus differed significantly for the various saponins, they all shared qualitatively similar rheological properties: (1) the elastic modulus was much higher than the viscous one. (2) Up to a certain critical value of surface stress, sC, the single master curve described the dependence of the creep compliance versus time. This rheological response was described well by the compound Voigt model. (3) On increasing the surface stress above sC, the compliance decreased with the applied stress, and eventually, all layers became purely viscous, indicating a loss in the layer structure, responsible for the elastic properties. The saponin extracts, showing the highest elastic moduli, were those of Escin, Tea saponins and Berry saponins, all containing predominantly monodesmosidic triterpenoid saponins. Similarly, a high surface modulus was measured for Ginsenosides extracts, containing bidesmosidic triterpenoid saponins with short sugar chains
    • …
    corecore