74 research outputs found

    TESTING A COMBINED MULTISPECTRAL-MULTITEMPORAL APPROACH FOR GETTING CLOUDLESS IMAGERY FOR SENTINEL-2

    Get PDF
    Abstract. Earth observation and land cover monitoring are among major applications for satellite data. However, the use of primary satellite information is often limited by clouds, cloud shadows, and haze, which generally contaminate optical imagery. For purposes of hazard assessment, for instance, such as flooding, drought, or seismic events, the availability of uncontaminated optical data is required. Different approaches exist for masking and replacing cloud/haze related contamination. However, most common algorithms take advantage by employing thermal data. Hence, we tested an algorithm suitable for optical imagery only. The approach combines a multispectral-multitemporal strategy to retrieve daytime cloudless and shadow-free imagery. While the approach has been explored for Landsat information, namely Landsat 5 TM and Landsat 8 OLI, here we aim at testing the suitability of the method for Sentinel-2 Multi-Spectral Instrument. A multitemporal stack, for the same image scene, is employed to retrieve a composite uncontaminated image over a temporal period of few months. Besides, in order to emphasize the effectiveness of optical imagery for monitoring post-disaster events, two temporal stages have been processed, before and after a critical seismic event occurred in Lombok Island, Indonesia, in summer 2018. The approach relies on a clouds and cloud shadows masking algorithm, based on spectral features, and a data reconstruction phase based on automatic selection of the most suitable pixels from a multitemporal stack. Results have been tested with uncontaminated image samples for the same scene. High accuracy is achieved

    Improving Local Climate Zones Automatic Classification Based on Physic-Morphological Urban Features

    Get PDF
    The Local Climate Zone (LCZ) classification scheme, introduced by Stewart and Oke (2012), offers promising opportunities for better studying the urban climate phenomena at the micro- and local scale (e.g. the urban heat island effect). However, although several methods have been introduced to apply the concept of LCZs to cities, only a few utilize publicly available data, like, for instance, the World Urban Database and Access Portal Tools (WUDAPT). However, to date, results are relatively rough, and frequent quality assessments demonstrate moderate overall accuracy. This paper proposes an approach for improving the quality of LCZ automatic classification, combining freely available multispectral satellite imagery together with morphological features of the urban environment. And, overall accuracy of 67% was achieved for the Metropolitan City of Milan with an improvement of 12% with respect to using only Landsat 8 multispectral and thermal data. This ascertains the physic-morphological nature of the LCZs and opens the possibility for mapping more accurate LCZs without the need for additional thermal information

    Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with stereo secchi

    Full text link
    We discuss how simultaneous observations by multiple heliospheric imagers can provide some important information about the azimuthal properties of Coronal Mass Ejections (CMEs) in the heliosphere. We propose two simple models of CME geometry that can be used to derive information about the azimuthal deflection and the azimuthal expansion of CMEs from SECCHI/HI observations. We apply these two models to four CMEs well-observed by both STEREO spacecraft during the year 2008. We find that in three cases, the joint STEREO-A and B observations are consistent with CMEs moving radially outward. In some cases, we are able to derive the azimuthal cross-section of the CME fronts, and we are able to measure the deviation from self-similar evolution. The results from this analysis show the importance of having multiple satellites dedicated to space weather forecasting, for example in orbits at the Lagrangian L4 and L5 points.Comment: 7 pages, 4 figures, 1 table, accepted to Ap

    Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU

    Full text link
    Forecasting the in situ properties of coronal mass ejections (CMEs) from remote images is expected to strongly enhance predictions of space weather, and is of general interest for studying the interaction of CMEs with planetary environments. We study the feasibility of using a single heliospheric imager (HI) instrument, imaging the solar wind density from the Sun to 1 AU, for connecting remote images to in situ observations of CMEs. We compare the predictions of speed and arrival time for 22 CMEs (in 2008-2012) to the corresponding interplanetary coronal mass ejection (ICME) parameters at in situ observatories (STEREO PLASTIC/IMPACT, Wind SWE/MFI). The list consists of front- and backsided, slow and fast CMEs (up to 2700kms12700 \: km \: s^{-1}). We track the CMEs to 34.9±7.134.9 \pm 7.1 degrees elongation from the Sun with J-maps constructed using the SATPLOT tool, resulting in prediction lead times of 26.4±15.3-26.4 \pm 15.3 hours. The geometrical models we use assume different CME front shapes (Fixed-Φ\Phi, Harmonic Mean, Self-Similar Expansion), and constant CME speed and direction. We find no significant superiority in the predictive capability of any of the three methods. The absolute difference between predicted and observed ICME arrival times is 8.1±6.38.1 \pm 6.3 hours (rmsrms value of 10.9h). Speeds are consistent to within 284±288kms1284 \pm 288 \: km \: s^{-1}. Empirical corrections to the predictions enhance their performance for the arrival times to 6.1±5.06.1 \pm 5.0 hours (rmsrms value of 7.9h), and for the speeds to 53±50kms153 \pm 50 \: km \: s^{-1}. These results are important for Solar Orbiter and a space weather mission positioned away from the Sun-Earth line.Comment: 19 pages, 13 figures, accepted for publication in the Astrophysical Journa

    Interplanetary and Geomagnetic Consequences of Interacting CMEs of 13-14 June 2012

    Full text link
    We report on the kinematics of two interacting CMEs observed on 13 and 14 June 2012. Both CMEs originated from the same active region NOAA 11504. After their launches which were separated by several hours, they were observed to interact at a distance of 100 Rs from the Sun. The interaction led to a moderate geomagnetic storm at the Earth with Dst index of approximately, -86 nT. The kinematics of the two CMEs is estimated using data from the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) onboard the Solar Terrestrial Relations Observatory (STEREO). Assuming a head-on collision scenario, we find that the collision is inelastic in nature. Further, the signatures of their interaction are examined using the in situ observations obtained by Wind and the Advance Composition Explorer (ACE) spacecraft. It is also found that this interaction event led to the strongest sudden storm commencement (SSC) (approximately 150 nT) of the present Solar Cycle 24. The SSC was of long duration, approximately 20 hours. The role of interacting CMEs in enhancing the geoeffectiveness is examined.Comment: 17 pages, 5 figures, Accepted in Solar Physics Journa

    The Physical Processes of CME/ICME Evolution

    Get PDF
    As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.Peer reviewe

    Short-term variability of the Sun-Earth system: an overview of progress made during the CAWSES-II period

    Get PDF

    Origin and ion charge state evolution of solar wind transients during 4 - 7 August 2011

    Get PDF
    This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 647214). The computational work for this article was carried out on the joint STFC and SFC (SRIF) funded clusters at the University of St Andrews (Scotland, UK). The work is partially supported by RFBR grants 17-02-00787, 14-02-00945 and the P7 Program of the Russian Academy of Sciences.We present a study of the complex event consisting of several solar wind transients detected by the Advanced Composition Explorer (ACE) on 4 - 7 August 2011, which caused a geomagnetic storm with Dst=-110 nT. The supposed coronal sources, three flares and coronal mass ejections (CMEs), occurred on 2 - 4 August 2011 in active region (AR) 11261. To investigate the solar origin and formation of these transients, we study the kinematic and thermodynamic properties of the expanding coronal structures using the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) EUV images and differential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI) magnetic field maps were used as the input data for the 3D magnetohydrodynamic (MHD) model to describe the flux rope ejection (Pagano, Mackay, and Poedts, 2013b). We characterize the early phase of the flux rope ejection in the corona, where the usual three-component CME structure formed. The fluxrope was ejected with a speed of about 200 km s-1 to the height of 0.25 R⊙. The kinematics of the modeled CME front agrees well with the Solar Terrestrial Relations Observatory (STEREO) EUV measurements. Using the results of the plasma diagnostics and MHD modeling, we calculate the ion charge ratios of carbon and oxygen as well as the mean charge state of iron ions of the 2 August 2011 CME, taking into account the processes of heating, cooling, expansion, ionization, and recombination of the moving plasma in the corona up to the frozen-in region. We estimate a probable heating rate of the CME plasma in the low corona by matching the calculated ion composition parameters of the CME with those measured in situ for the solar wind transients. We also consider the similarities and discrepancies between the results of the MHD simulation and the observations.PostprintPeer reviewe
    corecore