88 research outputs found

    Staphylococcus aureus DivIB is a peptidoglycan-binding protein that is required for a morphological checkpoint in cell division

    Get PDF
    Bacterial cell division is a fundamental process that requires the coordinated actions of a number of proteins which form a complex macromolecular machine known as the divisome. The membrane-spanning proteins DivIB and its orthologue FtsQ are crucial divisome components in Gram-positive and Gram-negative bacteria respectively. However, the role of almost all of the integral division proteins, including DivIB, still remains largely unknown. Here we show that the extracellular domain of DivIB is able to bind peptidoglycan and have mapped the binding to its β subdomain. Conditional mutational studies show that divIB is essential for Staphylococcus aureus growth, while phenotypic analyses following depletion of DivIB results in a block in the completion, but not initiation, of septum formation. Localisation studies suggest that DivIB only transiently localises to the division site and may mark previous sites of septation. We propose that DivIB is required for a molecular checkpoint during division to ensure the correct assembly of the divisome at midcell and to prevent hydrolytic growth of the cell in the absence of a completed septum

    Scientific Visualisation of Extremely Large Distributed Astronomical Surveys

    Get PDF
    Interactive real-time visualisation of large data sets plays an important role in scientific research. It is even more relevant for astronomy where new cutting edge large telescopes will generate tens of petabytes sky surveys. We describe our solution, developed in context of the Euclid space mission whose large astronomical imaging data will be distributed over several heterogeneous Science Data Centres (SDCs) across the world. In our visualisation architecture for distributed data, millions of survey images (HiPS) distributed over SDCs are efficiently transported and combined to deliver image(s) of interest at the desired resolution (up to pixel level) to the user. This is achieved by optimally utilising a combination of several modern tools consisting of http servers, a Front-End Node and load-balancer (FEN), reverse proxies, PHP/Python scripts, MySQL databases, including on the fly image generation/combination which all feed (only) the required information to the Aladin interactive visualisation tool at the remote user's Personal Computer (PC). It has potential applications for large projects (e.g., Square Kilometre Array) having data distributed across several locations

    Scientific Visualisation of Extremely Large Distributed Astronomical Surveys

    Get PDF
    Interactive real-time visualisation of large data sets plays an important role in scientific research. It is even more relevant for astronomy where new cutting edge large telescopes will generate tens of petabytes sky surveys. We describe our solution, developed in context of the Euclid space mission whose large astronomical imaging data will be distributed over several heterogeneous Science Data Centres (SDCs) across the world. In our visualisation architecture for distributed data, millions of survey images (HiPS) distributed over SDCs are efficiently transported and combined to deliver image(s) of interest at the desired resolution (up to pixel level) to the user. This is achieved by optimally utilising a combination of several modern tools consisting of http servers, a Front-End Node and load-balancer (FEN), reverse proxies, PHP/Python scripts, MySQL databases, including on the fly image generation/combination which all feed (only) the required information to the Aladin interactive visualisation tool at the remote user's Personal Computer (PC). It has potential applications for large projects (e.g., Square Kilometre Array) having data distributed across several locations

    KiDS-SQuaD: The KiDS Strongly lensed Quasar Detection project

    Get PDF
    New methods have been recently developed to search for strong gravitational lenses, in particular lensed quasars, in wide-field imaging surveys. Here, we compare the performance of three different, morphology- and photometry- based methods to find lens candidates over the Kilo-Degree Survey (KiDS) DR3 footprint (440 deg2^2). The three methods are: i) a multiplet detection in KiDS-DR3 and/or Gaia-DR1, ii) direct modeling of KiDS cutouts and iii) positional offsets between different surveys (KiDS-vs-Gaia, Gaia-vs-2MASS), with purpose-built astrometric recalibrations. The first benchmark for the methods has been set by the recovery of known lenses. We are able to recover seven out of ten known lenses and pairs of quasars observed in the KiDS DR3 footprint, or eight out of ten with improved selection criteria and looser colour pre-selection. This success rate reflects the combination of all methods together, which, taken individually, performed significantly worse (four lenses each). One movelty of our analysis is that the comparison of the performances of the different methods has revealed the pros and cons of the approaches and, most of all, the complementarities. We finally provide a list of high-grade candidates found by one or more methods, awaiting spectroscopic follow-up for confirmation. Of these, KiDS 1042+0023 is to our knowledge the first confirmed lensed quasar from KiDS, exhibiting two quasar spectra at the same source redshift at either sides of a red galaxy, with uniform flux-ratio f1.25f\approx1.25 over the wavelength range 0.45μm<λ<0.75μm.0.45\mu\mathrm{m}<\lambda<0.75\mu\mathrm{m}.Comment: 12 pages, 4 figures, 4 tables, accepted for publication in MNRA

    The galaxy environment in GAMA G3C groups using the Kilo Degree Survey Data Release 3

    Get PDF
    We aim to investigate the galaxy environment in GAMA Galaxy Groups Catalogue (G3C) using a volume-limited galaxy sample from the Kilo Degree Survey Data Release 3. The k-Nearest Neighbour technique is adapted to take into account the probability density functions (PDFs) of photometric redshifts in our calculations. This algorithm was tested on simulated KiDS tiles, showing its capability of recovering the relation between galaxy colour, luminosity and local environment. The characterization of the galaxy environment in G3C groups shows systematically steeper density contrasts for more massive groups. The red galaxy fraction gradients in these groups is evident for most of group mass bins. The density contrast of red galaxies is systematically higher at group centers when compared to blue galaxy ones. In addition, distinct group center definitions are used to show that our results are insensitive to center definitions. These results confirm the galaxy evolution scenario which environmental mechanisms are responsible for a slow quenching process as galaxies fall into groups and clusters, resulting in a smooth observed colour gradients in galaxy systems.Comment: 14 pages, Accepted to MNRA

    First test of Verlinde's theory of Emergent Gravity using weak gravitational lensing measurements

    Get PDF
    Verlinde (2016) proposed that the observed excess gravity in galaxies and clusters is the consequence of Emergent Gravity (EG). In this theory the standard gravitational laws are modified on galactic and larger scales due to the displacement of dark energy by baryonic matter. EG gives an estimate of the excess gravity (described as an apparent dark matter density) in terms of the baryonic mass distribution and the Hubble parameter. In this work we present the first test of EG using weak gravitational lensing, within the regime of validity of the current model. Although there is no direct description of lensing and cosmology in EG yet, we can make a reasonable estimate of the expected lensing signal of low redshift galaxies by assuming a background LambdaCDM cosmology. We measure the (apparent) average surface mass density profiles of 33,613 isolated central galaxies, and compare them to those predicted by EG based on the galaxies' baryonic masses. To this end we employ the ~180 square degrees overlap of the Kilo-Degree Survey (KiDS) with the spectroscopic Galaxy And Mass Assembly (GAMA) survey. We find that the prediction from EG, despite requiring no free parameters, is in good agreement with the observed galaxy-galaxy lensing profiles in four different stellar mass bins. Although this performance is remarkable, this study is only a first step. Further advancements on both the theoretical framework and observational tests of EG are needed before it can be considered a fully developed and solidly tested theory
    corecore