227 research outputs found
Dynamics of fingering convection I: Small-scale fluxes and large-scale instabilities
Double-diffusive instabilities are often invoked to explain enhanced
transport in stably-stratified fluids. The most-studied natural manifestation
of this process, fingering convection, commonly occurs in the ocean's
thermocline and typically increases diapycnal mixing by two orders of magnitude
over molecular diffusion. Fingering convection is also often associated with
structures on much larger scales, such as thermohaline intrusions, gravity
waves and thermohaline staircases. In this paper, we present an exhaustive
study of the phenomenon from small to large scales. We perform the first
three-dimensional simulations of the process at realistic values of the heat
and salt diffusivities and provide accurate estimates of the induced turbulent
transport. Our results are consistent with oceanic field measurements of
diapycnal mixing in fingering regions. We then develop a generalized mean-field
theory to study the stability of fingering systems to large-scale
perturbations, using our calculated turbulent fluxes to parameterize
small-scale transport. The theory recovers the intrusive instability, the
collective instability, and the gamma-instability as limiting cases. We find
that the fastest-growing large-scale mode depends sensitively on the ratio of
the background gradients of temperature and salinity (the density ratio). While
only intrusive modes exist at high density ratios, the collective and
gamma-instabilities dominate the system at the low density ratios where
staircases are typically observed. We conclude by discussing our findings in
the context of staircase formation theory.Comment: 23 pages, 9 figures, submitted to JF
Dynamics of fingering convection II: The formation of thermohaline staircases
Regions of the ocean's thermocline unstable to salt fingering are often
observed to host thermohaline staircases, stacks of deep well-mixed convective
layers separated by thin stably-stratified interfaces. Decades after their
discovery, however, their origin remains controversial. In this paper we use 3D
direct numerical simulations to shed light on the problem. We study the
evolution of an analogous double-diffusive system, starting from an initial
statistically homogeneous fingering state and find that it spontaneously
transforms into a layered state. By analysing our results in the light of the
mean-field theory developed in Paper I, a clear picture of the sequence of
events resulting in the staircase formation emerges. A collective instability
of homogeneous fingering convection first excites a field of gravity waves,
with a well-defined vertical wavelength. However, the waves saturate early
through regular but localized breaking events, and are not directly responsible
for the formation of the staircase. Meanwhile, slower-growing, horizontally
invariant but vertically quasi-periodic gamma-modes are also excited and grow
according to the gamma-instability mechanism. Our results suggest that the
nonlinear interaction between these various mean-field modes of instability
leads to the selection of one particular gamma-mode as the staircase
progenitor. Upon reaching a critical amplitude, this progenitor overturns into
a fully-formed staircase. We conclude by extending the results of our
simulations to real oceanic parameter values, and find that the progenitor
gamma-mode is expected to grow on a timescale of a few hours, and leads to the
formation of a thermohaline staircase in about one day with an initial spacing
of the order of one to two metres.Comment: 18 pages, 9 figures, associated mpeg file at
http://earth.uni-muenster.de/~stellma/movie_small.mp4, submitted to JF
On the penetration of meridional circulation below the solar convection zone
Meridional flows with velocities of a few meters per second are observed in
the uppermost regions of the solar convection zone. The amplitude and pattern
of the flows deeper in the solar interior, in particular near the top of the
radiative region, are of crucial importance to a wide range of solar
magnetohydrodynamical processes. In this paper, we provide a systematic study
of the penetration of large-scale meridional flows from the convection zone
into the radiative zone. In particular, we study the effects of the assumed
boundary conditions applied at the convective-radiative interface on the deeper
flows. Using simplified analytical models in conjunction with more complete
numerical methods, we show that penetration of the convectively-driven
meridional flows into the deeper interior is not necessarily limited to a
shallow Ekman depth but can penetrate much deeper, depending on how the
convective-radiative interface flows are modeled.Comment: 13 pages, 5 figures. Subitted to Ap
On Differential Rotation and Convection in the Sun
We show that the differential rotation profile of the solar convection zone,
apart from inner and outer boundary layers, can be reproduced with great accu-
racy if the isorotation contours correspond to characteristics of the thermal
wind equation. This requires that there be a formal quantitative relationship
involving the entropy and the angular velocity. Earlier work has suggested that
this could arise from magnetohydrodynamic stability constraints; here we argue
that purely hydrodynamical processes could also lead to such a result. Of
special importance to the hydrodynamical solution is the fact that the thermal
wind equation is insensitive to radial entropy gradients. This allows a much
more general class of solutions to fit the solar isorotation contours, beyond
just those in which the entropy itself must be a function of the angular
velocity. In particular, for this expanded class, the thermal wind solution of
the solar rotation profile remains valid even when large radial entropy
gradients are present. A clear and explicit example of this class of solution
appears to be present in published numerical simulations of the solar
convective zone. Though hydrodynamical in character, the theory is not
sensitive to the presence of weak magnetic fields. Thus, the identification of
solar isorotation contours with the characteristics of the thermal wind
equation appears to be robust, accommodating, but by no means requiring,
magnetic field dynamics.Comment: 16 pages, 2 figures. Accepted for publication in MNRA
Multi-scale theory of rotating turbulence
We consider turbulence induced by an arbitrary forcing and derive turbulence
amplitude and turbulent transport coefficients, first by using a quasi-linear
theory and then by using a multi-scale renormalisation analysis. With an
isotropic forcing, the quasi-linear theory gives that the turbulent transport
coefficients, both parallel and perpendicular to the rotation vector, have the
asymptotic scaling for rapid rotation (i.e. when the rotation
rate is larger than the inverse of the correlation time of the forcing
and the diffusion time), while the renormalisation analysis suggests a weaker
dependence on , with scaling. The turbulence amplitude
is found to scale as in the rapid rotation limit
depending on the property of the forcing. In the case of an anisotropic
forcing, we find that non-diffusive fluxes of angular momentum scale as
for rapid rotation, depending on the temporal
correlation of the forcing
Hydrodynamic simulations of shell convection in stellar cores
Shell convection driven by nuclear burning in a stellar core is a common
hydrodynamic event in the evolution of many types of stars. We encounter and
simulate this convection (i) in the helium core of a low-mass red giant during
core helium flash leading to a dredge-down of protons across an entropy
barrier, (ii) in a carbon-oxygen core of an intermediate-mass star during core
carbon flash, and (iii) in the oxygen and carbon burning shell above the
silicon-sulfur rich core of a massive star prior to supernova explosion. Our
results, which were obtained with the hydrodynamics code HERAKLES, suggest that
both entropy gradients and entropy barriers are less important for stellar
structure than commonly assumed. Our simulations further reveal a new dynamic
mixing process operating below the base of shell convection zones.Comment: 8 pages, 3 figures .. submitted to a proceedings of conference about
"Red Giants as Probes of the Structure and Evolution of the Milky Way" which
has taken place between 15-17 November 2010 in Rom
Self-consistent theory of turbulent transport in the solar tachocline. III. Gravity waves
To understand the fundamental physical processes important for the evolution
of solar rotation and distribution of chemical species, we provide theoretical
predictions for particle mixing and momentum transport in the stably stratified
tachocline. By envisioning that turbulence is driven externally in the
tachocline (e.g. by plume penetration), we compute the amplitude of turbulent
flow, turbulent particle diffusivities, and eddy viscosity, by incorporating
the effect of a strong radial differential rotation and stable stratification.
We identify the different roles that the shear flow and stable stratification
play in turbulence regulation and transport. Particle transport is found to be
severely quenched due to stable stratification as well as radial differential
rotation, especially in the radial direction with an effectively more efficient
horizontal transport. The eddy viscosity is shown to become negative for
parameter values typical of the tachocline, suggesting that turbulence in the
stably stratified tachocline leads to a non-uniform radial differential
rotation. Similar results also hold in the radiative interiors of stars, in
general
Analysis of the shearing instability in nonlinear convection and magnetoconvection
Numerical experiments on two-dimensional convection with or without a vertical magnetic field reveal a bewildering variety of periodic and aperiodic oscillations. Steady rolls can develop a shearing instability, in which rolls turning over in one direction grow at the expense of rolls turning over in the other, resulting in a net shear across the layer. As the temperature difference across the fluid is increased, two-dimensional pulsating waves occur, in which the direction of shear alternates. We analyse the nonlinear dynamics of this behaviour by first constructing appropriate low-order sets of ordinary differential equations, which show the same behaviour, and then analysing the global bifurcations that lead to these oscillations by constructing one-dimensional return maps. We compare the behaviour of the partial differential equations, the models and the maps in systematic two-parameter studies of both the magnetic and the non-magnetic cases, emphasising how the symmetries of periodic solutions change as a result of global bifurcations. Much of the interesting behaviour is associated with a discontinuous change in the leading direction of a fixed point at a global bifurcation; this change occurs when the magnetic field is introduced
Astrophysical turbulence modeling
The role of turbulence in various astrophysical settings is reviewed. Among
the differences to laboratory and atmospheric turbulence we highlight the
ubiquitous presence of magnetic fields that are generally produced and
maintained by dynamo action. The extreme temperature and density contrasts and
stratifications are emphasized in connection with turbulence in the
interstellar medium and in stars with outer convection zones, respectively. In
many cases turbulence plays an essential role in facilitating enhanced
transport of mass, momentum, energy, and magnetic fields in terms of the
corresponding coarse-grained mean fields. Those transport properties are
usually strongly modified by anisotropies and often completely new effects
emerge in such a description that have no correspondence in terms of the
original (non coarse-grained) fields.Comment: 88 pages, 26 figures, published in Reports on Progress in Physic
High mobility In0.75Ga0.25As quantum wells in an InAs phonon lattice
InGaAs based devices are great complements to silicon for CMOS, as they provide an increased carrier saturation velocity, lower operating voltage and reduced power dissipation (International technology roadmap for semiconductors (www.itrs2.net)). In this work we show that In0.75Ga0.25As quantum wells with a high mobility, 15 000 to 20 000 cm2V-1s-1at ambient temperature, show an InAs-like phonon with an energy of 28.8 meV, frequency of 232 cm-1that dominates the polar-optical mode scattering from ∼70 K to 300 K. The measured optical phonon frequency is insensitive to the carrier density modulated with a surface gate or LED illumination. We model the electron scattering mechanisms as a function of temperature and identify mechanisms that limit the electron mobility in In0.75Ga0.25As quantum wells. Background impurity scattering starts to dominate for temperatures <100 K. In the high mobility In0.75Ga0.25As quantum well, GaAs-like phonons do not couple to the electron gas unlike the case of In0.53Ga0.47As quantum wells
- …