554 research outputs found
Profiling soil microbial communities influenced by reduced summer precipitation and farming system history
Soil bacteria and fungi are the basis of soil food webs and contribute to a wide range of essential soil functions in arable lands. Intense land use and climate change induced reductions in summer precipitation can have varying influences on abundance, composition, and activity of microbial communities with largely unknown consequences for soil functions and plant growth including crop yields. The impact of altered precipitation patterns on soil biodiversity and associated ecosystem functions is on top of the list of eight major research gaps identified by an expert group for the European Commission still, this relationship is rarely studied under field conditions
Determination of sample temperature in unstable static fields by combining solid-state Br-79 and C-13 NMR
Monitoring the isotropic chemical shifts to calibrate the sample temperature presupposes a perfect stability of the static magnetic field. It can be difficult to satisfy this requirement in solid-state NMR measurements. This paper describes a simple way to recover the accurate temperature dependence of the 79Br resonance after subtracting changes of resonance frequency due to variations of the static field, monitored by the 13C resonance. © 2014 Elsevier Inc. All rights reserved
Sensitivity improvement during heteronuclear spin decoupling in solid-state nuclear magnetic resonance experiments at high spinning frequencies and moderate radio-frequency amplitudes
Searching for optimal conditions during one- and multi-dimensional solid-state NMR experiments in high static fields may require spinning the sample at frequencies above 40 kHz. This implies challenging requirements for heteronuclear spin decoupling. We have compared the performance of the latest heteronuclear decoupling schemes at high magic-angle spinning frequencies. The results demonstrate that at commonly used rf amplitudes between 80 and 120 kHz, PISSARRO decoupling provides substantial sensitivity improvement. The performance of low-amplitude decoupling at different spinning speeds is also compared and its dependence on the inherent inhomogeneity of the rf field is probed by numerical simulations. © 2014 Published by Elsevier B.V
Distribution of Pico- and Nanosecond Motions in Disordered Proteins from Nuclear Spin Relaxation
Intrinsically disordered proteins and intrinsically disordered regions (IDRs) are ubiquitous in the eukaryotic proteome. The description and understanding of their conformational properties require the development of new experimental, computational, and theoretical approaches. Here, we use nuclear spin relaxation to investigate the distribution of timescales of motions in an IDR from picoseconds to nanoseconds. Nitrogen-15 relaxation rates have been measured at five magnetic fields, ranging from 9.4 to 23.5 T (400-1000 MHz for protons). This exceptional wealth of data allowed us to map the spectral density function for the motions of backbone NH pairs in the partially disordered transcription factor Engrailed at 11 different frequencies. We introduce an approach called interpretation of motions by a projection onto an array of correlation times (IMPACT), which focuses on an array of six correlation times with intervals that are equidistant on a logarithmic scale between 21 ps and 21 ns. The distribution of motions in Engrailed varies smoothly along the protein sequence and is multimodal for most residues, with a prevalence of motions around 1 ns in the IDR. We show that IMPACT often provides better quantitative agreement with experimental data than conventional model-free or extended model-free analyses with two or three correlation times. We introduce a graphical representation that offers a convenient platform for a qualitative discussion of dynamics. Even when relaxation data are only acquired at three magnetic fields that are readily accessible, the IMPACT analysis gives a satisfactory characterization of spectral density functions, thus opening the way to a broad use of this approach
The interaction between the proliferating macroalga Asparagopsis taxiformis and the coral Astroides calycularis induces changes in microbiome and metabolomic fingerprints
Mediterranean Sea ecosystems are considered as hotspots of biological introductions, exposed to possible negative effects of non-indigenous species. In such temperate marine ecosystems, macroalgae may be dominant, with a great percentage of their diversity represented by introduced species. Their interaction with temperate indigenous benthic organisms have been poorly investigated. To provide new insights, we performed an experimental study on the interaction between the introduced proliferative red alga Asparagopsis taxiformis and the indigenous Mediterranean coral Astroides calycularis. The biological response measurements included meta-barcoding of the associated microbial communities and metabolomic fingerprinting of both species. Significant changes were detected among both associated microbial communities, the interspecific differences decreasing with stronger host interaction. No short term effects of the macroalga on the coral health, neither on its polyp activity or its metabolism, were detected. In contrast, the contact interaction with the coral induced a change in the macroalgal metabolomic fingerprint with a significant increase of its bioactivity against the marine bacteria Aliivibrio fischeri. This induction was related to the expression of bioactive metabolites located on the macroalgal surface, a phenomenon which might represent an immediate defensive response of the macroalga or an allelopathic offense against coral.ERA-NET Biome project "SEAPROLIF"; CNRS; Provence Alpes Cote d'Azur Region; TOTAL Fundation; Fundacao para a Ciencia e a Tecnologia (FCT) [Netbiome/0002/2011]; FCT fellowships [SFRH/BPD/63703/2009, SFRH/BPD/107878/2015]info:eu-repo/semantics/publishedVersio
Tracking the impact of depression in a perspective-taking task
Research has identified impairments in Theory of Mind (ToM) abilities in depressed patients, particularly in relation to tasks involving empathetic responses and belief reasoning. We aimed to build on this research by exploring the relationship between depressed mood and cognitive ToM, specifically visual perspective-taking ability. High and low depressed participants were eye-tracked as they completed a perspective-taking task, in which they followed the instructions of a âdirectorâ to move target objects (e.g. a âteapot with spots onâ) around a grid, in the presence of a temporarily-ambiguous competitor object (e.g. a âteapot with stars onâ). Importantly, some of the objects in the grid were occluded from the directorâs (but not the participantâs) view. Results revealed no group-based difference in participantsâ ability to use perspective cues to identify the target object. All participants were faster to select the target object when the competitor was only available to the participant, compared to when the competitor was mutually available to the participant and director. Eye-tracking measures supported this pattern, revealing that perspective directed participantsâ visual search immediately upon hearing the ambiguous objectâs name (e.g. âteapotâ). We discuss how these results fit with previous studies that have shown a negative relationship between depression and ToM
Folding Circular Permutants of IL-1ÎČ: Route Selection Driven by Functional Frustration
Interleukin-1ÎČ (IL-1ÎČ) is the cytokine crucial to inflammatory and immune response. Two dominant routes are populated in the folding to native structure. These distinct routes are a result of the competition between early packing of the functional loops versus closure of the ÎČ-barrel to achieve efficient folding and have been observed both experimentally and computationally. Kinetic experiments on the WT protein established that the dominant route is characterized by early packing of geometrically frustrated functional loops. However, deletion of one of the functional loops, the ÎČ-bulge, switches the dominant route to an alternative, yet, as accessible, route, where the termini necessary for barrel closure form first. Here, we explore the effect of circular permutation of the WT sequence on the observed folding landscape with a combination of kinetic and thermodynamic experiments. Our experiments show that while the rate of formation of permutant protein is always slower than that observed for the WT sequence, the region of initial nucleation for all permutants is similar to that observed for the WT protein and occurs within a similar timescale. That is, even permutants with significant sequence rearrangement in which the functional-nucleus is placed at opposing ends of the polypeptide chain, fold by the dominant WT âfunctional loop-packing routeâ, despite the entropic cost of having to fold the N- and C- termini early. Taken together, our results indicate that the early packing of the functional loops dominates the folding landscape in active proteins, and, despite the entropic penalty of coalescing the termini early, these proteins will populate an entropically unfavorable route in order to conserve function. More generally, circular permutation can elucidate the influence of local energetic stabilization of functional regions within a protein, where topological complexity creates a mismatch between energetics and topology in active proteins
Tracking Subtle Stereotypes of Children with Trisomy 21: From Facial-Feature-Based to Implicit Stereotyping
Background: Stigmatization is one of the greatest obstacles to the successful integration of people with Trisomy 21 (T21 or Down syndrome), the most frequent genetic disorder associated with intellectual disability. Research on attitudes and stereotypes toward these people still focuses on explicit measures subjected to social-desirability biases, and neglects how variability in facial stigmata influences attitudes and stereotyping. Methodology/Principal Findings: The participants were 165 adults including 55 young adult students, 55 non-student adults, and 55 professional caregivers working with intellectually disabled persons. They were faced with implicit association tests (IAT), a well-known technique whereby response latency is used to capture the relative strength with which some groups of peopleâhere photographed faces of typically developing children and children with T21âare automatically (without conscious awareness) associated with positive versus negative attributes in memory. Each participant also rated the same photographed faces (consciously accessible evaluations). We provide the first evidence that the positive bias typically found in explicit judgments of children with T21 is smaller for those whose facial features are highly characteristic of this disorder, compared to their counterparts with less distinctive features and to typically developing children. We also show that this bias can coexist with negative evaluations at the implicit level (with large effect sizes), even among professional caregivers
Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization
We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1Hâ1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements Δon/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to Δon/off â 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated
- âŠ