20 research outputs found

    Antibody-guided in vivo imaging of Aspergillus fumigatus lung infections during anti-fungal azole treatment

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: Due to their large size, the raw imaging data that support the findings of this study are directly available from the corresponding authors upon reasonable request. Derived data have been compiled in the Source Data file provided with this paper. Any remaining data supporting the findings from this study are available from the corresponding author upon reasonable request.Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease of immunocompromised humans, caused by the opportunistic fungal pathogen Aspergillus fumigatus. Inadequacies in current diagnostic procedures mean that early diagnosis of the disease, critical to patient survival, remains a major clinical challenge, and is leading to the empiric use of antifungal drugs and emergence of azole resistance. A non-invasive procedure that allows both unambiguous detection of IPA, and its response to azole treatment, is therefore needed. Here, we show that a humanised Aspergillus-specific monoclonal antibody, dual labelled with a radionuclide and fluorophore, can be used in immunoPET/MRI in vivo and 3D light sheet fluorescence microscopy ex vivo to quantify early A. fumigatus lung infections and to monitor the efficacy of azole therapy. Our antibody-guided approach reveals that early drug intervention is critical to prevent complete invasion of the lungs by the fungus, and demonstrates the power of molecular imaging as a non-invasive procedure for tracking IPA in vivo.Ministry of Culture and Science of North Rhine-WestphaliaGoverning Mayor of Berlin including Science and ResearchFederal Ministry of Education and ResearchEuropean Union FP7Werner Siemens Foundatio

    Advances in the in vivo molecular imaging of invasive pulmonary aspergillosis

    No full text
    This is the final version. Available on open access from MDPI via the DOI in this recordInvasive pulmonary aspergillosis (IPA) is a life-threatening infection of immunocompromised patients with Aspergillus fumigatus, a ubiquitous environmental mould. While there are numerous functioning antifungal therapies, their high cost, substantial side effects and fear of overt resistance development preclude permanent prophylactic medication of risk-patients. Hence, a fast and definitive diagnosis of IPA is desirable, to quickly identify those patients that really require aggressive antimycotic treatment and to follow the course of the therapeutic intervention. Yet, despite decades of research into this issue such a diagnostic procedure is still not available. Here we discuss the array of currently available methods for IPA detection and their limits. We then show that molecular imaging using positron-emission-tomography (PET) combined with morphological computed tomography or magnetic imaging is highly promising to become a future non-invasive approach for IPA diagnosis and therapy monitoring, albeit still requiring thorough validation and relying on further acceptance and dissemination of the approach. Thereby our approach using the A. fumigatus-specific humanized monoclonal antibody hJF5 labelled with 64Cu as PET-tracer has proven highly effective in pre-clinical models and hence bears high potential for human application.European Union FP

    Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent

    No full text
    Indocyanine green (ICG) is an FDA-approved, strongly photo-absorbent/fluorescent probe that has been incorporated into a clinically-relevant PEGylated liposome as a flexible optoacoustic contrast agent platform. This study describes the engineering of targeted PEGylated liposome-ICG using the anti-MUC-1 "humanized" monoclonal antibody (MoAb) hCTM01 as a tumour-specific theranostic system. We aimed to visualise non-invasively the tumour accumulation of these MoAb-targeted liposomes over time in tumour-bearing mice using multispectral optoacoustic tomography (MSOT). Preferential accumulation of targeted PEGylated liposome-ICG was studied after intravenous administration in comparison to non-targeted PEGylated liposome-ICG using both fast growing (4T1) and slow growing (HT-29) MUC-1 positive tumour models. Monitoring liposomal ICG in the tumour showed that both targeted and non-targeted liposome-ICG formulations preferentially accumulated into the tumour models studied. Rapid accumulation was observed for targeted liposomes at early time points mainly in the periphery of the tumour volume suggesting binding to available MUC-1 receptors. In contrast, non-targeted PEGylated liposomes showed accumulation at the centre of the tumour at later time points. In an attempt to take this a step further, we successfully encapsulated the anticancer drug, doxorubicin (DOX) into both targeted and non-targeted PEGylated liposome-ICG. The engineering of DOX-loaded targeted ICG liposome systems present a novel platform for combined tumour-specific therapy and diagnosis. This can open new possibilities in the design of advanced image-guided cancer therapeutics

    Antibody-guided Molecular Imaging of Aspergillus Lung Infections in Leukemia Patients

    No full text
    This is the author accepted manuscript.Werner Siemens FoundationEuropean Union FP
    corecore