2,927 research outputs found

    Frequency pulling and mixing of relaxation oscillations in superconducting nanowires

    Get PDF
    Many superconducting technologies such as rapid single flux quantum computing (RSFQ) and superconducting quantum interference devices (SQUIDs) rely on the modulation of nonlinear dynamics in Josephson junctions for functionality. More recently, however, superconducting devices have been developed based on the switching and thermal heating of nanowires for use in fields such as single photon detection and digital logic. In this paper, we use resistive shunting to control the nonlinear heating of a superconducting nanowire and compare the resulting dynamics to those observed in Josephson junctions. We show that interaction of the hotspot growth with the external shunt produces high frequency relaxation oscillations with similar behavior as observed in Josephson junctions due to their rapid time constants and ability to be modulated by a weak periodic signal. In particular, we use a microwave drive to pull and mix the oscillation frequency, resulting in phase locked features that resemble the AC Josephson effect. New nanowire devices based on these conclusions have promising applications in fields such as parametric amplification and frequency multiplexing

    Gamow Shell-Model Description of Weakly Bound and Unbound Nuclear States

    Full text link
    Recently, the shell model in the complex k-plane (the so-called Gamow Shell Model) has been formulated using a complex Berggren ensemble representing bound single-particle states, single-particle resonances, and non-resonant continuum states. In this framework, we shall discuss binding energies and energy spectra of neutron-rich helium and lithium isotopes. The single-particle basis used is that of the Hartree-Fock potential generated self-consistently by the finite-range residual interaction.Comment: 13 pages, 2 figures, presented by N. Michel at the XXVII Symposium On Nuclear Physics, Taxco, Guerrero, Mexico, January 5-8 200

    Electric circuit networks equivalent to chaotic quantum billiards

    Full text link
    We formulate two types of electric RLC resonance network equivalent to quantum billiards. In the network of inductors grounded by capacitors squared resonant frequencies are eigenvalues of the quantum billiard. In the network of capacitors grounded by inductors squared resonant frequencies are given by inverse eigen values of the billiard. In both cases local voltages play role of the wave function of the quantum billiard. However as different from quantum billiards there is a heat power because of resistance of the inductors. In the equivalent chaotic billiards we derive the distribution of the heat power which well describes numerical statistics.Comment: 9 pages, 7 figure

    Quasiparticle Resonances in the BCS Approach

    Full text link
    We present a simple method for calculating the energies and the widths of quasiparticle resonant states. The method is based on BCS equations solved in the Berggren representation. In this representation the quasiparticle resonances are associated to the Gamow states of the mean field. The method is illustrated for the case of neutron-rich nuclei 20−22^{20-22}O and 84^{84}Ni. It is shown that the contribution of the continuum coupling to the pairing correlations is small and largely dominated by a few resonant states close to the continuum threshold.Comment: 14 pages, 2 figure

    Bridging the gap between nanowires and Josephson junctions: a superconducting device based on controlled fluxon transfer across nanowires

    Get PDF
    The basis for superconducting electronics can broadly be divided between two technologies: the Josephson junction and the superconducting nanowire. While the Josephson junction (JJ) remains the dominant technology due to its high speed and low power dissipation, recently proposed nanowire devices offer improvements such as gain, high fanout, and compatibility with CMOS circuits. Despite these benefits, nanowire-based electronics have largely been limited to binary operations, with devices switching between the superconducting state and a high-impedance resistive state dominated by uncontrolled hotspot dynamics. Unlike the JJ, they cannot increment an output through successive switching, and their operation speeds are limited by their slow thermal reset times. Thus, there is a need for an intermediate device with the interfacing capabilities of a nanowire but a faster, moderated response allowing for modulation of the output. Here, we present a nanowire device based on controlled fluxon transport. We show that the device is capable of responding proportionally to the strength of its input, unlike other nanowire technologies. The device can be operated to produce a multilevel output with distinguishable states, which can be tuned by circuit parameters. Agreement between experimental results and electrothermal circuit simulations demonstrates that the device is classical and may be readily engineered for applications including use as a multilevel memory

    A revised tropical to subtropical paleogene planktonic foraminiferal zonation

    Get PDF
    Author Posting. © Cushman Foundation for Foraminiferal Research, 2005. This article is posted here by permission of Cushman Foundation for Foraminiferal Research for personal use, not for redistribution. The definitive version was published in Journal of Foraminiferal Research 35 (2005): 279-298, doi:10.2113/35.4.279.New biostratigraphic investigations on deep sea cores and outcrop sections have revealed several shortcomings in currently used tropical to subtropical Eocene planktonic foraminiferal zonal schemes in the form of: 1) modified taxonomic concepts, 2) modified/different ranges of taxa, and 3) improved calibrations with magnetostratigraphy. This new information provides us with an opportunity to make some necessary improvements to existing Eocene biostratigraphic schemes. At the same time, we provide an alphanumeric notation for Paleogene zones using the prefix ‘P’ (for Paleocene), ‘E’ (for Eocene) and ‘O’ (for Oligocene) to achieve consistency with recent short-hand notation for other Cenozoic zones (Miocene [’M’], Pliocene [PL] and Pleistocene [PT]). Sixteen Eocene (E) zones are introduced (or nomenclaturally emended) to replace the 13 zones and subzones of Berggren and others (1995). This new zonation serves as a template for the taxonomic and phylogenetic studies in the forthcoming Atlas of Eocene Planktonic Foraminifera (Pearson and others, in press). The 10 zones and subzones of the Paleocene (Berggren and others, 1995) are retained and renamed and/or emended to reflect improved taxonomy and an updated chronologic calibration to the Global Polarity Time Scale (GPTS) (Berggren and others, 2000). The Paleocene/Eocene boundary is correlated with the lowest occurrence (LO) of Acarinina sibaiyaensis (base of Zone E1), at the top of the truncated and redefined (former) Zone P5. The five-fold zonation of the Oligocene (Berggren and others, 1995) is modified to a six-fold zonation with the elevation of (former) Subzones P21a and P21b to zonal status. The Oligocene (O) zonal components are renamed and/or nomenclaturally emended

    Free space-coupled superconducting nanowire single photon detectors for infrared optical communications

    Get PDF
    This paper describes the construction of a cryostat and an optical system with a free-space coupling efficiency of 56.5% +/- 3.4% to a superconducting nanowire single-photon detector (SNSPD) for infrared quantum communication and spectrum analysis. A 1K pot decreases the base temperature to T = 1.7 K from the 2.9 K reached by the cold head cooled by a pulse-tube cryocooler. The minimum spot size coupled to the detector chip was 6.6 +/- 0.11 {\mu}m starting from a fiber source at wavelength, {\lambda} = 1.55 {\mu}m. We demonstrated efficient photon counting on a detector with an 8 x 7.3 {\mu}m^2 area. We measured a dark count rate of 95 +/- 3.35 kcps and a system detection efficiency of 1.64% +/- 0.13%. We explain the key steps that are required to further improve the coupling efficiency.Comment: 16 pages, double-space

    Temperature dependent BCS equations with continuum coupling

    Get PDF
    The temperature dependent BCS equations are modified in order to include the contribution of the continuum single particle states. The influence of the continuum upon the critical temperature corresponding to the phase transition from a superfluid to a normal state and upon the behaviour of the excitation energy and of the entropy is discussed.Comment: 9 pages, 3 figures, to appear in Phys. Rev.
    • …
    corecore