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Abstract:  This paper describes the construction of a cryostat and an optical 

system with a free-space coupling efficiency of 56.5% ± 3.4% to a 

superconducting nanowire single-photon detector (SNSPD) for infrared 

quantum communication and spectrum analysis. A 1K pot decreases the 

base temperature to T = 1.7 K from the 2.9 K reached by the cold head 

cooled by a pulse-tube cryocooler. The minimum spot size coupled to the 

detector chip was 6.6 ± 0.11 µm starting from a fiber source at wavelength, 

λ = 1.55 µm. We demonstrated efficient photon counting on a detector with 

an 8 × 7.3 µm2 area. We measured a dark count rate of 95 ± 3.35 kcps and a 

system detection efficiency of 1.64% ± 0.13%. We explain the key steps 

that are required to further improve the coupling efficiency. 

 
 

1. Introduction  

Free-space quantum optical communication in the mid-infrared (mid-IR) [1] is an important 

technology for applications such as naval operations that cannot rely on optical fibers. The 

mid-IR range is particularly interesting because of a window of transmission in the 

atmosphere at wavelength λ = 10 µm. These communications require high-speed 

single-photon detectors sensitive to mid-IR radiation. At present, superconducting nanowire 

single-photon detectors (SNSPDs) [2,3] represent one of the best detectors for this 

application, due to their single-photon sensitivity, their high speed (few-ns reset time), and 

their high time resolution (few tens of ps time-jitter). System detection efficiencies 



(SDE) greater than 67% [4-6] were demonstrated for SNSPDs at near-infrared (near-IR) 

wavelength (λ = 1.55 µm). This demonstration was achieved not by increasing the devices 

detection efficiency but by maximizing the coupling efficiency, i.e. the fraction of photons 

emitted by the source that are coupled to the SNSPD. In all the cited cases, an optical fiber 

was aligned to an SNSPD, either passively [4] or actively [5]. We identified three main 

reasons why we cannot apply the same alignment method to mid-IR optical communications. 

First, the dimensions of the detector depend on the fiber used. An optical fiber has a fixed core 

diameter that consequently limits the minimum diameter of the beam emitted by the fiber. To 

ensure high coupling efficiency, the minimum dimension of the detector has to be larger than 

the beam diameter; thus, this dimension is also limited. This requirement becomes a 

non-trivial issue for experiments in the mid-IR, which require optical fibers with a mode-field 

diameter MFD > 20 µm versus the typical active area of an SNSPD which is ≤ 15×15 µm2. 

Second, using mid-IR fibers would limit the scalability of the system to multiple channels. 

Every channel in the system requires an optical fiber; thus, for a large array of detectors a 

bundle of fibers is required, and integrating this bundle into a cryostat with tight spaces can 

make the design challenging. Finally, mid-IR optical fibers are more rigid and fragile than 

near-IR fibers: there is a long-term bend radius of > 40 mm for mid-IR fibers vs a long-term 

bend radius of > 13 mm for near-IR fibers. Thus, it would be more difficult to thermalize, 

cleave, or integrate a mid-IR fiber with components affected by thermal contraction. 

An optical system based on free-space optics solves these three problems. In diffraction 

optics, an optical beam can be focused on a spot whose minimum diameter is smaller than the 

wavelength of the beam itself. In addition, a free-space optical system can host several 

channels in a single optical path as long as there is no cross-talk at the receiver. Depending on 

the spot dimension achieved and the diffraction limit of the system, we can determine how 

many channels in parallel the system can accommodate.  

To date we could not find any demonstration of a cryogenic system with free-space 

high-coupling efficiency to a single-photon detector in the near- or mid-IR range. Free-space 



coupling to cryogenic detectors was proposed in the past for astronomical imaging [7] and 

spectroscopy [8], and for quantum communications [9,10]. Some of these proposals used 

semiconductor devices. These detectors could be fabricated in arrays with an area four orders 

of magnitude larger than an SNSPD; however, they were not single-photon sensitive. In 

addition, the base temperature needed for these devices to operate (~6 K [7], ~50 K [8]),  

allowed the use of cryostats with a cooling power that is not available below 4.2 K. Other 

systems used cryogenic detectors to receive quasi-optical millimeter and sub-millimeter 

radiation [9]. In this case, it is possible to build in-plane antennas that can efficiently focus the 

radiation onto the detector. Thus, the active area of the receiver is effectively mm2-scale. 

Verevkin et al. [10] used free-space coupling for SNSPDs, but they state that “the working 

area of our detectors is always smaller and often much smaller than the incident photon beam 

size”. We propose here a cryogenic set-up for superconducting single-photon detectors built to 

achieve high-efficiency (> 50%) free-space coupling. 

We designed and built a vibration-isolating cryostat with free-space optical access able to 

reach a base temperature T = 2.9 K, with an additional stage that can cycle the sample stage to 

T = 1.7 K for 1.5 hours; we measured vibrations amplitudes of 498 ± 98 nm at the sample 

stage. The optical system, composed of two lenses (see Fig. 1(b)), was able to focus light on a 

detector with a minimum spot waist of 6.6 ± 0.11 µm at λ = 1.55 µm. One of the two lenses 

was mounted and thermalized inside the cryostat, and it was aligned to the SNSPD chip 

before the cooldown. 

We used an 8 × 7.3 µm2 area NbN-on-sapphire SNSPD based on 100-nm-wide nanowires 

without an optical cavity to calibrate our set-up. We biased the detector at 97% of its 

switching current (the current at which the detector stops being superconducting and switches 

to a resistive state). At this set point, we measured a dark count rate of 95 ± 3.35 kcps. At the 

same bias current we measured an SDE of 1.64% ± 0.13%. By characterizing the dimension 

of the beam at the detector, we estimated a coupling efficiency of 56.5% ± 3.4%. From the 



ratio between the two efficiencies, we calculated that the SNSPD’s device detection efficiency 

(DDE) was 2.9% at the same bias current. 

This document is divided as follows: in Sections 2 and 3, we present the design of the 

experimental set-up divided into the optical system and the cryogenic system, respectively. In 

Section 4, we present the results of the mechanical vibrations measurements. In Section 5, we 

analyze the results obtained from the measurements of SDE on large area SNSPDs. Finally, 

we conclude by discussing the impact of this report on future work. 

 

2. Optical system 

We designed a three-lens optical system to image the surface of the SNSPD chip and to focus 

a test beam from a laser source on a detector. A picture and schematic of the system are 

shown in Fig. 1. The imaging system was designed to achieve a field of view of ~200 µm. 

Imaging the SNSPD chip allowed us to align the optical beam to the detector and to place 

Lens 3 at the correct focal distance. Even though the ultimate goal was to use the optical 

system at mid-IR wavelengths, for this first demonstration we created an optical system able 

to focus a beam spot of 12.7 µm in diameter at λ = 1.55 µm.  

 

Fig. 1. (a) Picture of the complete optical set-up used for imaging the chip and focusing the 

light on the SNSPD. The SNSPD chip and Lens 3 were mounted inside the cryostat. The 

picture was selectively cropped. (b) Schematic of the optical set-up used for chip imaging and 

beam focusing. The green lines represents the path of the light beam used by the imaging 

system. The red lines represents the path of the light beam that is focused on the detector. The 

polarizing beamsplitters are used only for the imaging system. For the detection efficiency 



characterization, we use a quarter-wave and a half-wave plate to maximize the transmission 

through the beamsplitters. 

We designed a two-lens telescope to couple > 90% of the light coming from the source 

onto the active area of the detector; because of the large numerical aperture required to couple 

λ = 10 µm light on SNSPD, we had to mount Lens 3 inside the cryostat. The yield in the 

fabrication process and the constraints in the detector’s speed due to the kinetic inductance of 

the NbN [11], [12], limit our SNSPDs maximum dimensions. An NbN SNSPD with a 

15×15 µm2 active area, 80-nm-wide nanowires and 40% fill factor typically showed a reset 

time of 9 ns, which is as high as we wanted to go for 100 MHz optical communications. We 

determined from Gaussian optics that in order to have 90% of the source power impinging on 

an active area of 15×15 µm2, the beam waist had to be no larger than 7.5 µm. As a 

consequence, we determined that at λ = 10 µm we needed a numerical aperture of NA = 0.41 

at Lens 3; thus, for a 25-mm-diameter lens, rather than a larger lens, the maximum acceptable 

focal length is fLens3 ~28 mm. We chose a 25-mm-diameter lens because increasing the 

aperture of the optical system not only would have increased the stray light impinging on the 

detector, but it would have also compromised the cooling ability of the cryostat, due to the 

increased incoming thermal radiation. In addition, because of the short focal length of Lens 3, 

we mounted it inside the cryostat (as shown in Fig. 1b). From the commercially available 

lenses, we selected a C-coated aspheric lens for Lens 3 with f = 20 mm. 

Starting from our selection for Lens 3 and design wavelength, we picked Lens 1 from 

commercially available lenses. As we mentioned earlier, for the test described in this 

document we used a fiber-coupled coherent light source at λ = 1.55 µm, as a signal. We 

characterized the beam profile at the output of the optical fiber, and we observed a Gaussian 

beam with a beam quality M2 = 1.35 and a beam waist of 8.3 ± 0.05 µm. Thus, we chose an 

aspheric lens with fLens1 = 26 mm, so that the demagnification of the telescope was 1.3×. In 

Fig. 2a, we show the profile of the Gaussian beam at the output of the telescope characterized 



with a beam profiler. We obtained a minimum Gaussian beam waist of 4.82 ± 0.04 µm, which 

was close to the 4.8 µm waist that we obtained from theoretical calculations [13]. 

The fLens4 was selected to obtain a field of view of 200 µm. In Fig. 1b, the green lines 

represent the path followed by the incoherent visible light (λ = 635 nm) in the imaging system. 

The light back-reflected by the SNSPD chip is focused through a telescope formed by lenses 2 

and 3 on a CCD camera. The active area of the camera chip is 12.5 × 12.5 mm2; thus, for a 

field of view of 200 µm we needed a magnification of 25×. Because fLens3 = 20 mm, we used 

fLens4 = 500 mm. Fig. 2b shows an image acquired with the optical set-up and centered on an 

SNSPD. 

Because of the imaging system, we are able to align the focusing system to the SNSPD in 

two separate steps [14]. First, Lens 3 was aligned to center the image on the selected SNSPD. 

In a second step, we aligned the optical source and Lens 1 so that the beam spot was centered 

on the detector. The use of two separate optical systems allowed us also to verify that Lens 1 

was at the focal distance from the SNSPD chip; in particular, we were able to verify that the 

image was focused on the same plane where the beam from Source 2 was focused. 

 

Fig. 2. (a) Beam profile of the spot light focused by the focusing system measured with a beam 

profiler. The profile is fitted with a Gaussian profile to extrapolate the beam waist. (b) Image 

of the SNSPD detector on a 200-µm-diameter field of view taken with the optical set-up. The 

bright dot is the beam from a λ = 635 nm laser focused on the chip. The spotlight was moved to 

place it on the area where an SNSPD was fabricated (inside the red circle).  

3. Cryogenic Set-up 



For single-photon optical communications in the mid-IR, we needed a cryostat able to reach a 

base temperature T < 2 K, even with an optical opening. The two main reasons for needing 

that temperature are dark counts and material used for the SNSPDs. It has been demonstrated 

in the past that reducing the base temperature of an SNSPD even by a few tenths of K can 

significantly change the detector’s dark count rate [15]; thus, the temperature should as low as 

possible. In addition, we wanted to be able to operate SNSPDs based on WSi [16] and not 

NbN, which are more sensitive to mid-IR photons.  

We built a cryostat able to reach a base temperature T = 1.7 K at the sample stage; the 

system was precooled to T = 2.9 K with a Cryomech pulse-tube cryocooler (PT415), and then 

reached base temperature T = 1.7 K using a sorption fridge from PhotonSpot Inc. The system 

was also designed to isolate the mechanical vibrations generated by the pulse-tube from the 

sample stage (see Section 4). 

In Fig. 3a, we show a schematic of the cryostat. The system inside the external chassis 

can be physically separated into two assemblies. The top assembly is shown in Fig. 3b, and it 

is mainly responsible for cooling the system: the pulse-tube cryocooler (Cryomech PT415) 

has a first stage (Stage 1) with a cooling power Pc = 36 W at T = 45 K, and a second stage 

(Stage 2) with Pc = 1.5 W at T = 4.2 K; the cold head of the sorption fridge (PhotonSpot 

Freeze 4) can reach a temperature T < 1 K, for a time that depends on the heat load (Qc) 

incident on it and on the base temperature reached by the pulse-tube cryocooler. The bottom 

assembly is shown in Fig. 3c. This assembly hosts the SNSPD chip, and is mounted directly 

on the optical table; thus, we can perform optical alignment to the detector before cooling 

down the entire system. The components in Fig. 3b and 3c with the same label have been 

thermally connected with oxygen-free high thermal conductivity (OFHC) copper. The copper 

parts are bolted together, with a layer of Apiezon vacuum grease in between to improve the 

heat conduction. This flexible thermal coupling allowed us to detach the bottom and the top 

assemblies, and easily access the cooling stages of the system while keeping the optics in the 

cryostat on the optical table. 



 
Fig. 3. (a) Schematic of the cryostat. The entire system is also enclosed in a stainless steel 

chassis. (b) CAD design of the top assembly of the cryostat. (c) CAD design of the bottom 

assembly of the cryostat.  



The materials and the geometry of the system were selected with the goal to minimize Qc 

on the pulse-tube cryocooler and on the sorption fridge [17]. Oxygen-free high-conductivity 

(OFHC) copper is one of the most widely used materials for cryogenic thermal connections 

because of its unmatched thermal conductivity. G-10 is another widely used material in 

cryogenics; because of its low thermal conductivity and high rigidity, G-10 is an ideal 

material for rigid connections between parts at different temperatures. 

Table 1 shows the heat load (Qc) budget for the top and bottom assemblies. For the top 

assembly, as shown in Fig. 3b, we used G-10 bars to hang the stage at T = 35 K (Stage 1) 

from the top flange of the cryostat (T = 300 K), and the stage at T = 3 K (Stage 2) from 

Stage 1. The 35K stage and the 3K stage are cooled by two stages of the cryocooler. The 

sorption fridge is mounted on and precooled by the Stage 2. In the bottom assembly, we have 

used bars made of G-10 and knuckles made of aluminum glued with Stycast Epoxy to mount 

Stage 1 on the bottom of the cryostat, and then Stage 2 on top of Stage 1. We have also used a 

G-10 post to mount the chip holder on Stage 2. The heat load and the imperfect connection 

with the cold head of the sorption fridge allowed the sample stage to reach a base temperature 

of 1.7 K. 

Table 1 Heat load (Qc) budget of the parts connecting stages at different temperatures. 

 Material Temperatures gradient Qc 
Top Assembly 

Hangers G-10 300 K – 35 K 0.71 W 
Hangers G-10 35 K – 3 K 0.32 W 

Bottom Assembly 

Knuckled bars G-10/aluminum 300 K – 35 K < 1.0 W 
Knuckled bars G-10/aluminum 35 K – 3 K < 88 mW 
Chip mount holder G-10 3 K – 0.8 K 1.8 mW 

We estimated the contribution to Qc from thermal radiation [17]. We calculated that the 

heat radiated from the room temperature stage to Stage 1 is ~ 2.5 W. We therefore constructed 

a radiation shield mounted directly to Stage 1 both at the top and at the bottom of the cryostat. 

We cut a window in the radiation shield to allow the light from Source 2 to access the 

cryostat; for this window, we used a visible light filter to block parasitic radiation (i.e., not 

coming from our source). In addition to the radiation shield, we used a 10 layer 

superinsulation made of aluminum-coated Mylar between the radiation shield and the outer 



walls (at room temperature), between the radiation shield and Stage 2, and around the copper 

braid connecting the cold head of the sorption fridge to the chip holder. Each layer of Mylar is 

expected to reduce the amount of incident heat due to radiation up to a factor 2. 

4. Mechanical vibrations 

Another requirement for our cryostat was to reduce the mechanical vibrations between the 

optical system and the SNSPD below 3 µm. Mechanical vibrations with amplitude > 3 µm can 

reduce the average coupling efficiency of the optical set-up by more than 10%. When the 

Cryomech pulse-tube was operated without modification, the 3K stage vibrated with an RMS 

amplitude of 10 µm. As shown in Fig. 3a, the cryocooler was rigidly fixed at the top to the 

external chassis of the cryostat and to the optical table. Because of the large mass of the entire 

system (600 kg including the optical table) the vibrations were damped at the top of the 

cryostat. However, the cryocooler acted like a vertical cantilever, so that the two pulse-tube 

stages still vibrated. We further isolated the vibrations by using a combination of OFHC 

copper bars and braids to connect the pulse-tube stages to Stage 1 and Stage 2 at the top and 

bottom of the cryostat. The copper bars guaranteed high heat conduction, while the soft braids 

decoupled the detector from the cantilevered vibrations from the pulse-tube. 

We determined that the amplitude of the vibrations at the sample stage was 498 ± 98 nm 

by using the time-dependence of the count rate from the detector. Fig. 4a shows the count rate 

measured on an 8 × 7.3 µm2 area NbN SNSPD, when the beam was shifted along the longer 

axis of the SNSPD by 4.6 ± 0.5 µm from the center of the detector. When the center of the 

beam and the center of the detector were coincident, we could not see the same oscillations 

because of the small effect on the light coupling. On the edge of the detector, a change in the 

beam position produced a larger relative change in the impinging power. Fig. 4b shows the 

Fourier Transform of the signal on Fig. 4a. A peak was present at a frequency of 1.5 Hz, 

which was the frequency of the piston of the pulse-tube’s engine. Fig. 4c shows the average 

and the standard deviation (error bar) of the count rate measured as a function of the distance 

between the beam’s center and the SNSPD’s center. The curve was fitted to extrapolate a 



beam waist of 6.6 ± 0.11 µm. From the beam waist and the standard deviation of the count 

rate, we determined a vibration amplitude of 498 ± 98 nm at 1.5 Hz. We measured that the 

beam power changed with a standard deviation of 5.25%, and we included it in the vibration 

amplitude error. 

We measured the vibrations of the sample stage at higher frequencies by using the 

oscillations in the power of the light reflected by a highly reflective chip, shown in Fig. 4d. 

We focused the infrared beam on the edge of a Si chip coated with a 50 nm Au layer mounted 

on the sample holder. The light reflected by the chip was focused on a fast free-space 

photodetector (bandwidth DC – 460 kHz), which was connected to an oscilloscope. Fig. 4f 

shows the reflected power as a function of the beam position from the edge of the chip. By 

fitting the curve in Fig. 4f, we determined that the beam waist was w = 7.93 µm. We were not 

able to perform optimal focusing because we were not using an SNSPD for fine alignment. 

From the oscillations traces we observed vibrations at ~ 1.5 Hz and 19 Hz with amplitudes of 

170 ± 50 nm and 91 ± 50 nm, respectively, which can be seen also in the FFT graph in 

Fig. 4e. Although this measurement shows a lower vibration amplitude compared to the 

measurement described in the previous paragraph, the frequency is the same that we observed 

in the count rate measurement. We were not able to explain the origin of the vibrations 

observed at 19 Hz. We did not observe oscillations at higher frequencies. 

 



 

Fig. 4. (a) Count rate from an 8×7.3 µm2 area NbN SNSPD as a function of time. The signal 

beam was positioned at 4.6 µm from the center of the detector. (b) Fast Fourier Transform of 

the signal shown in (a). The peak at 1.5 Hz is at the same operating frequency of the pulse-

tube. (c) Count rate from the SNSPD as a function of the distance between the beam center and 

the SNSPD center. (d) Oscilloscope trace of the light power reflected by the edge of a 

gold-coated chip. (e) Fast Fourier Transform of the signal shown in d. We were able to identify 

the origin of the peak at 19 Hz, yet. (f) Light power reflected at the edge of a gold-coated chip 

as a function of the beam position.  

 

5. Free-space coupling demonstration 

In Section 4 we proved that we could couple near-IR light with free-space optics on an 

8 × 7.3 µm2 area NbN SNSPD based on 100 nm wide nanowires. We tested the SDE using the 

same detector. The SDE is defined as the ratio between the photon count rate (PCR) registered 

by the detector (excluding dark counts) and the photon flux measured in fiber at the optical 

source. The count rate measured when the optical source is off is the system dark count rate 

(SDCR). 

In Fig. 5a, we plotted SDCR (blue squares) and PCR (red triangles) as a function of the 

bias current, Ibias, applied to the detector normalized by its switching current (Isw). As we can 

see from the graph, SDCR < PCR for Ibias up to 97% of Isw at 1.7 K. Thus, we can reliably 

extract PCR from the total counts and the SDE, which we plotted in Fig. 5b as a function of 



Ibias applied to the detector normalized by Isw. The system reached a maximum SDE of 

1.64% ± 0.13%. For this test, we used a coherent light source with λ = 1.55 µm with a power 

of 710 ± 37 fW measured in fiber outside the cryostat, which corresponds to a total photon 

rate of 5.53 ± 0.29 Mphoton/s. From the beam waist measurement described in Section 4 

(w = 6.6 ± 0.11 µm) and the active area of the detector, we calculated that the coupling 

efficiency (CE) of the system was 56.5% ± 3.4%. Thus, we can calculate the maximum device 

detection efficiency DDE = SDE/CE = 2.9%. 

 
Fig. 5. (a) System dark count rate (SDCR, blue squares) and photon count rate (PCR, red 

triangles) as a function of the bias current normalized by the switching current of the SNSPD. 

The SDCR is determined by measuring the count rate of the detector while the source is turned 

off; no other filter is applied to the optical system. The PCR is determined by measuring the 

count rate when the optical source is turned on and by reducing it by the SDCR. (b) System 

detection efficiency (SDE) and device detection efficiency (DDE) as a function of the bias 

current normalized by the switching current of the SNSPD. The SDE is determined as the 

photon count rate divided by the photon emission rate of the source. 

6. Discussion 

The scope of this work was to create a free-space coupled cryogenic system for the use of 

SNSPDs in the mid-IR dispersive optics QKD communication. The use of free-space optics 

allows us to adapt the optical set-up for a different wavelength range by replacing the lenses. 

Our demonstration showed promising results of obtaining SDE > 50%. In particular, if we 

were to use a 10×10 µm2 active area detector, we would achieve a CE = 76%, and the device 

detection efficiency would be the only limitation to a receiver with SDE > 70%. In addition, 

our measurements showed that we can reliably characterize the DDE of an SNSPD. 



We could improve the performance of the cryostat if we were to use better quality copper 

braids and if we were to mount the chip directly on the cold head of the sorption fridge. The 

OFHC copper braids that we use at the moment are soldered with silver based solder to 

copper plates for easy mounting. If we were to e-beam weld those parts instead, we could 

obtain a conductivity twice as high as the present value. In addition, mounting the chip 

directly to the sorption fridge would reduce the temperature gradient between the two. This 

change requires a substantial redesign of the cryostat. 

Our next step will be to repeat the demonstration with mid-IR optics at λ = 10 µm, which 

will require a system with a larger numerical aperture and wavelength filters. For future 

experiments at 10-µm-wavelength, we will replace the optical components with materials 

compatible with the mid-IR, such as germanium or zinc-selenide. In addition, we will replace 

Lens 1 with a larger focal length lens, while keeping Lens 3 at the same focal length, because 

we will need a stronger demagnification at mid-IR wavelength. We estimate that losses due to 

these components to be around 9% due to reflections. Furthermore, we will replace the CCD 

camera with an IR camera to image the SNSPD chip. We calculated that even if we were to 

use a spatial filter on the radiation shield to cut off thermal radiation at T = 300 K, we could 

still observe > 106 cps due to stray radiation. Thus, we are designing a bandpass filter system 

to reduce the thermal radiation bandwidth to the minimum. Once we can prove high coupling 

efficiency at the mid-IR wavelength, we will attempt to couple multiple sources to an SNSPD 

array. 

Finally, we will operate SNSPDs based on WSi, instead of NbN. The reason for this 

consideration is that WSi is a material with a lower bandgap that NbN, so it is more sensitive 

to low energy photons. As the bandgap in WSi is lower than in NbN, proportionally the 

critical temperature of WSi is lower. A temperature T < 2 K is required to operate thin-film 

WSi SNSPDs. 

7. Conclusion 



Our system represents the first step in the realization of a mid-IR single-photon receiver for 

free-space optical communication. Upgrading this receiver to a multi-channel system can 

allow single-photon communication at 100 Mbit/s. This technology could not only allow 

low-power secured maritime communications, but it could also be applied to space-to-earth 

communication. 

Outside of the secured optical communication framework, our free-space coupled system 

could be used for several other applications. A version of our system with visible-wavelength 

optics could be used to study the time-resolved emission of NV-centers, which are a key 

technology for quantum photonics. Mid-IR spectroscopy has become important for 

gas-sensing, and we could use a multi-channel version of our system to study the evolution 

of µs-time-scale chemical reactions. 
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