12 research outputs found

    Fe(III)-Citrate-Complex-Induced Photooxidation of 3-Methylphenol in Aqueous Solution

    Get PDF
    The photodegradation process of m-cresol (3-methylphenol), induced by Fe(III)-Cit complex, was investigated upon irradiation at 365 nm in natural water. The composition and photochemical properties of Fe(III)-Cit complex were studied by UV-Visible absorption spectrophotometer for optimizing the stoichiometry of the complex and photolysis under irradiation at 365 nm, respectively. A dark investigation of the system was performed before studying the photochemical behavior. The photooxidation efficiencies of m-cresol were dependent on the pH value, optimized at pH 2.86, oxygen, initial concentrations of Fe(III)-Cit complex, and m-cresol. Additionally, to look into the mechanism of m-cresol degradation using Fe(III)-Cit, tertiobutanol alcohol was used as scavenger for hydroxyl radicals and the result suggested that hydroxyl radical attack was the main pathway of m-cresol degradation. Besides, oxygen can enhance the photolysis of Fe(III)-Citrate complex by trapping the electron on the carbon centered radical formed after the photoredox process. Then O •− 2 formed reacts rapidly leading finally to formation of • OH radical. In absence of oxygen, less reactive species are formed; consequently the disappearance of m-cresol was strongly inhibited. Our work shows that the presence of Fe(III)-Citrate complex could have a considerable impact on the fate of organic pollutant in aquatic environment

    Isolation of alkaloids and anti-tumor activity of the crude methanolic extract of algerian Cytisus purgans

    Get PDF
    In this study, two known quinolizidine alkaloids which are sparteine and lupanine were isolated from the methanolic extract of the plant Cytisus purgans of Algerian flora by open column chromatography. These two compounds were identified on the basis of their spectral data (GC/MS, IR, MS, 1H and 13C). The anti-tumor activity of the crude methanolic extract of the aerial parts of the plant was also evaluated invitro against human breast cancer (MDA-MB-231) and human lung cancer (A549) cell lines using MTT assay

    Fe(III)-Citrate-Complex-Induced Photooxidation of 3-Methylphenol in Aqueous Solution

    Get PDF
    The photodegradation process of m-cresol (3-methylphenol), induced by Fe(III)-Cit complex, was investigated upon irradiation at 365 nm in natural water. The composition and photochemical properties of Fe(III)-Cit complex were studied by UV-Visible absorption spectrophotometer for optimizing the stoichiometry of the complex and photolysis under irradiation at 365 nm, respectively. A dark investigation of the system was performed before studying the photochemical behavior. The photooxidation efficiencies of m-cresol were dependent on the pH value, optimized at pH 2.86, oxygen, initial concentrations of Fe(III)-Cit complex, and m-cresol. Additionally, to look into the mechanism of m-cresol degradation using Fe(III)-Cit, tertiobutanol alcohol was used as scavenger for hydroxyl radicals and the result suggested that hydroxyl radical attack was the main pathway of m-cresol degradation. Besides, oxygen can enhance the photolysis of Fe(III)-Citrate complex by trapping the electron on the carbon centered radical formed after the photoredox process. Then O2•− formed reacts rapidly leading finally to formation of •OH radical. In absence of oxygen, less reactive species are formed; consequently the disappearance of m-cresol was strongly inhibited. Our work shows that the presence of Fe(III)-Citrate complex could have a considerable impact on the fate of organic pollutant in aquatic environment

    Capabilities of the multi-mechanism model in the prediction of the cyclic behavior of various classes of metals

    No full text
    International audienceThe paper deals with an evaluation of the multi-mechanism (MM) approach capabilities in the prediction of the cyclic behavior of different classes of metallic materials. For this objective, the tests detailed in (Taleb, Int J Plast 43:1–19, 2013a) have been simulated here by the MM model. In these tests, six alloys were considered: two ferritic steels (35NCD16 and XC18), two austenitic stainless steels (304L and 316L), one “extruded” aluminum alloy (2017A) and one copper-zinc alloy (CuZn27). The specimens have been subjected to proportional and non-proportional stress as well as the combination of stress and strain control at room temperature. The identification of the material parameters has been carried out using exclusively strain controlled experiments under proportional and non-proportional loading paths performed in the present study for each material. The model may describe a large number of phenomena with twenty five parameters in total but, it appears that for a given material under the adopted conditions, the activation of all parameters may be not necessary. Our attention was focused mainly on the capabilities to predict correctly the cyclic accumulation of the inelastic strain including the shape of the hysteresis loops. The comparison between test responses and their predictions by the MM model are generally satisfactory with relatively small number of material parameters (between eight and thirteen according to the material). One can also highlight the capability of the MM model to describe a transient ratcheting without activation of the dynamic recovery term in the kinematic variables. Finally, the MM model deserves improvement for a better description of the cyclic behavior of anisotropic materials
    corecore