133 research outputs found

    Carbon and arsenic metabolism in Thiomonas strains: differences revealed diverse adaptation processes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Thiomonas </it>strains are ubiquitous in arsenic-contaminated environments. Differences between <it>Thiomonas </it>strains in the way they have adapted and respond to arsenic have never been studied in detail. For this purpose, five <it>Thiomonas </it>strains, that are interesting in terms of arsenic metabolism were selected: <it>T. arsenivorans</it>, <it>Thiomonas </it>spp. WJ68 and 3As are able to oxidise As(III), while <it>Thiomonas </it>sp. Ynys1 and <it>T. perometabolis </it>are not. Moreover, <it>T. arsenivorans </it>and 3As present interesting physiological traits, in particular that these strains are able to use As(III) as an electron donor.</p> <p>Results</p> <p>The metabolism of carbon and arsenic was compared in the five <it>Thiomonas </it>strains belonging to two distinct phylogenetic groups. Greater physiological differences were found between these strains than might have been suggested by 16S rRNA/<it>rpoA </it>gene phylogeny, especially regarding arsenic metabolism. Physiologically, <it>T. perometabolis </it>and Ynys1 were unable to oxidise As(III) and were less arsenic-resistant than the other strains. Genetically, they appeared to lack the <it>aox </it>arsenic-oxidising genes and carried only a single <it>ars </it>arsenic resistance operon. <it>Thiomonas arsenivorans </it>belonged to a distinct phylogenetic group and increased its autotrophic metabolism when arsenic concentration increased. Differential proteomic analysis revealed that in <it>T. arsenivorans</it>, the <it>rbc</it>/<it>cbb </it>genes involved in the assimilation of inorganic carbon were induced in the presence of arsenic, whereas these genes were repressed in <it>Thiomonas </it>sp. 3As.</p> <p>Conclusion</p> <p>Taken together, these results show that these closely related bacteria differ substantially in their response to arsenic, amongst other factors, and suggest different relationships between carbon assimilation and arsenic metabolism.</p

    Temporal transcriptomic response during arsenic stress in Herminiimonas arsenicoxydans

    Get PDF
    Background: Arsenic is present in numerous ecosystems and microorganisms have developed various mechanisms to live in such hostile environments. Herminiimonas arsenicoxydans, a bacterium isolated from arsenic contaminated sludge, has acquired remarkable capabilities to cope with arsenic. In particular our previous studies have suggested the existence of a temporal induction of arsenite oxidase, a key enzyme in arsenic metabolism, in the presence of As(III). Results: Microarrays were designed to compare gene transcription profiles under a temporal As(III) exposure. Transcriptome kinetic analysis demonstrated the existence of two phases in arsenic response. The expression of approximatively 14% of the whole genome was significantly affected by an As(III) early stress and 4% by an As(III) late exposure. The early response was characterized by arsenic resistance, oxidative stress, chaperone synthesis and sulfur metabolism. The late response was characterized by arsenic metabolism and associated mechanisms such as phosphate transport and motility. The major metabolic changes were confirmed by chemical, transcriptional, physiological and biochemical experiments. These early and late responses were defined as general stress response and specific response to As(III), respectively. Conclusion: Gene expression patterns suggest that the exposure to As(III) induces an acute response to rapidly minimize the immediate effects of As(III). Upon a longer arsenic exposure, a broad metabolic response was induced. These data allowed to propose for the first time a kinetic model of the As(III) response in bacteria

    Quasi-one-dimensional antiferromagnetism and multiferroicity in CuCrO4_4

    Full text link
    The bulk magnetic properties of the new quasi-one-dimensional Heisenberg antiferromagnet, CuCrO4_4, were characterized by magnetic susceptibility, heat capacity, optical spectroscopy, EPR and dielectric capacitance measurements and density functional evaluations of the intra- and interchain spin exchange interactions. We found type-II multiferroicity below the N\'{e}el temperature of 8.2(5) K, arising from competing antiferromagnetic nearest-neighbor (JnnJ_{\rm nn}) and next-nearest-neighbor (JnnnJ_{\rm nnn}) intra-chain spin exchange interactions. Experimental and theoretical results indicate that the ratio Jnn/JnnnJ_{\rm nn}/J_{\rm nnn} is close to 2, putting CuCrO4_4 in the vicinity of the Majumdar-Ghosh point.Comment: 9 pages, 8 figures, submitted to PR

    Emergence of light-driven protometabolism on recruitment of a photocatalytic cofactor by a self-replicator

    Get PDF
    Establishing how life can emerge from inanimate matter is among the grand challenges of contemporary science. Chemical systems that capture life’s essential characteristics—replication, metabolism and compartmentalization—offer a route to understanding this momentous process. The synthesis of life, whether based on canonical biomolecules or fully synthetic molecules, requires the functional integration of these three characteristics. Here we show how a system of fully synthetic self-replicating molecules, on recruiting a cofactor, acquires the ability to transform thiols in its environment into disulfide precursors from which the molecules can replicate. The binding of replicator and cofactor enhances the activity of the latter in oxidizing thiols into disulfides through photoredox catalysis and thereby accelerates replication by increasing the availability of the disulfide precursors. This positive feedback marks the emergence of light-driven protometabolism in a system that bears no resemblance to canonical biochemistry and constitutes a major step towards the highly challenging aim of creating a new and completely synthetic form of life. [Figure not available: see fulltext.]

    Management of uncomplicated malaria in febrile under five-year-old children by community health workers in Madagascar: reliability of malaria rapid diagnostic tests

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early diagnosis, as well as prompt and effective treatment of uncomplicated malaria, are essential components of the anti-malaria strategy in Madagascar to prevent severe malaria, reduce mortality and limit malaria transmission. The purpose of this study was to assess the performance of the malaria rapid diagnostic tests (RDTs) used by community health workers (CHWs) by comparing RDT results with two reference methods (microscopy and Polymerase Chain Reaction, PCR).</p> <p>Methods</p> <p>Eight CHWs in two districts, each with a different level of endemic malaria transmission, were trained to use RDTs in the management of febrile children under five years of age. RDTs were performed by CHWs in all febrile children who consulted for fever. In parallel, retrospective parasitological diagnoses were made by microscopy and PCR. The results of these different diagnostic methods were analysed to evaluate the diagnostic performance of the RDTs administered by the CHWs. The stability of the RDTs stored by CHWs was also evaluated.</p> <p>Results</p> <p>Among 190 febrile children with suspected malaria who visited CHWs between February 2009 and February 2010, 89.5% were found to be positive for malaria parasites by PCR, 51.6% were positive by microscopy and 55.8% were positive by RDT. The performance accuracy of the RDTs used by CHWs in terms of sensitivity, specificity, positive and negative predictive values was greater than 85%. Concordance between microscopy and RDT, estimated by the Kappa value was 0.83 (95% CI: 0.75-0.91). RDTs stored by CHWs for 24 months were capable of detecting <it>Plasmodium falciparum </it>in blood at a level of 200 parasites/μl.</p> <p>Conclusion</p> <p>Introduction of easy-to-use diagnostic tools, such as RDTs, at the community level appears to be an effective strategy for improving febrile patient management and for reducing excessive use of anti-malarial drugs.</p

    Subinhibitory Arsenite Concentrations Lead to Population Dispersal in Thiomonas sp.

    Get PDF
    Biofilms represent the most common microbial lifestyle, allowing the survival of microbial populations exposed to harsh environmental conditions. Here, we show that the biofilm development of a bacterial species belonging to the Thiomonas genus, frequently found in arsenic polluted sites and playing a key role in arsenic natural remediation, is markedly modified when exposed to subinhibitory doses of this toxic element. Indeed, arsenite [As(III)] exposure led to a considerable impact on biofilm maturation by strongly increasing the extracellular matrix synthesis and by promoting significant cell death and lysis within microcolonies. These events were followed by the development of complex 3D-biofilm structures and subsequently by the dispersal of remobilized cells observed inside the previously formed hollow voids. Our results demonstrate that this biofilm community responds to arsenite stress in a multimodal way, enhancing both survival and dispersal. Addressing this complex bacterial response to As(III) stress, which might be used by other microorganisms under various adverse conditions, may be essential to understand how Thiomonas strains persist in extreme environments

    Entomological indicators of Plasmodium species transmission in Goma Tsé-Tsé and Madibou districts, in the Republic of Congo

    Get PDF
    Background: Malaria remains a major public health problem in the Republic of Congo, with Plasmodium falciparum being the deadliest species of Plasmodium in humans. Vector transmission of malaria is poorly studied in the country and no previous report compared rural and urban data. This study aimed to determine the Anopheles fauna and the entomological indices of malaria transmission in the rural and urban areas in the south of Brazzaville, and beyond. Methods: Indoor household mosquitoes capture using electric aspirator was performed in rural and urban areas during raining and dry seasons in 2021. The identification of Anopheles species was done using binocular magnifier and nested-PCR. TaqMan and nested-PCR were used to detect the Plasmodium species in the head/thorax and abdomens of Anopheles. Some entomological indices including the sporozoite infection rate, the entomological inoculation rate and the man biting rate were estimated. Results: A total of 699 Anopheles mosquitoes were collected: Anopheles gambiae sensu lato (s.l.) (90.7%), Anopheles funestus s.l. (6.9%), and Anopheles moucheti (2.4%). Three species of An. gambiae s.l. were identified including Anopheles gambiae sensu stricto (78.9%), Anopheles coluzzii (15.4%) and Anopheles arabiensis (5.7%). The overall sporozoite infection rate was 22.3% with a predominance of Plasmodium falciparum, followed by Plasmodium malariae and Plasmodium ovale. Anopheles aggressiveness rate was higher in households from rural area (1.1 bites/night) compared to that from urban area (0.8 ib/p/n). The overall entomological inoculation rate was 0.13 ib/p/n. This index was 0.17 ib/p/n and 0.092 ib/p/n in rural and in urban area, respectively, and was similar during the dry (0.18 ib/p/n) and rainy (0.14 ib/p/n) seasons. Conclusion: These findings highlight that malaria transmission remains high in rural and urban area in the south of Republic of Congo despite the ongoing control efforts, thereby indicating the need for more robust interventions

    A Tale of Two Oxidation States: Bacterial Colonization of Arsenic-Rich Environments

    Get PDF
    Microbial biotransformations have a major impact on contamination by toxic elements, which threatens public health in developing and industrial countries. Finding a means of preserving natural environments—including ground and surface waters—from arsenic constitutes a major challenge facing modern society. Although this metalloid is ubiquitous on Earth, thus far no bacterium thriving in arsenic-contaminated environments has been fully characterized. In-depth exploration of the genome of the β-proteobacterium Herminiimonas arsenicoxydans with regard to physiology, genetics, and proteomics, revealed that it possesses heretofore unsuspected mechanisms for coping with arsenic. Aside from multiple biochemical processes such as arsenic oxidation, reduction, and efflux, H. arsenicoxydans also exhibits positive chemotaxis and motility towards arsenic and metalloid scavenging by exopolysaccharides. These observations demonstrate the existence of a novel strategy to efficiently colonize arsenic-rich environments, which extends beyond oxidoreduction reactions. Such a microbial mechanism of detoxification, which is possibly exploitable for bioremediation applications of contaminated sites, may have played a crucial role in the occupation of ancient ecological niches on earth

    Genetic identification of cytomegaloviruses in a rural population of Côte d'Ivoire.

    Get PDF
    BACKGROUND: Cytomegaloviruses (CMVs) are herpesviruses that infect many mammalian species, including humans. Infection generally passes undetected, but the virus can cause serious disease in individuals with impaired immune function. Human CMV (HCMV) is circulating with high seroprevalence (60-100 %) on all continents. However, little information is available on HCMV genoprevalence and genetic diversity in subsaharan Africa, especially in rural areas of West Africa that are at high risk of human-to-human HCMV transmission. In addition, there is a potential for zoonotic spillover of pathogens through bushmeat hunting and handling in these areas as shown for various retroviruses. Although HCMV and nonhuman CMVs are regarded as species-specific, potential human infection with CMVs of non-human primate (NHP) origin, shown to circulate in the local NHP population, has not been studied. FINDINGS: Analysis of 657 human oral swabs and fecal samples collected from 518 individuals living in 8 villages of Côte d'Ivoire with generic PCR for identification of human and NHP CMVs revealed shedding of HCMV in 2.5 % of the individuals. Determination of glycoprotein B sequences showed identity with strains Towne, AD169 and Toledo, respectively. NHP CMV sequences were not detected. CONCLUSIONS: HCMV is actively circulating in a proportion of the rural Côte d'Ivoire human population with circulating strains being closely related to those previously identified in non-African countries. The lack of NHP CMVs in human populations in an environment conducive to cross-species infection supports zoonotic transmission of CMVs to humans being at most a rare event
    corecore