1,557 research outputs found

    Bioreactors in Tissue Engineering

    Get PDF

    The distance to the Serpens South Cluster from H2O masers

    Full text link
    In this Letter, we report Very Long Baseline Array observations of 22 GHz water masers toward the protostar CARMA-6, located at the center of the Serpens South young cluster. From the astrometric fits to maser spots, we derive a distance of 440.7+/-3.5 pc for the protostar (1% error). This represents the best direct distance determination obtained so far for an object this young and deeply embedded in this highly obscured region. Taking into account depth effects, we obtain a distance to the cluster of 440.7+/-4.6 pc. Stars visible in the optical that have astrometric solutions in the Gaia Data Release 3 are, on the other hand, all located in the periphery of the cluster. Their mean distance of 437 (+51, -41) pc is consistent within 1-sigma with the value derived from maser astrometry. As the maser source is just at the center of Serpens South, we finally solve the ambiguity of the distance to this region that has prevailed over the years.Comment: Accepted to A&A Letter

    Electro-kinetic technology as a low-cost method for dewatering food by-product

    Get PDF
    Increasing volumes of food waste, intense environmental awareness, and stringent legislation have imposed increased demands upon conventional food waste management. Food byproducts that were once considered to be without value are now being utilized as reusable materials, fuels, and energy in order to reduce waste. One major barrier to the valorization of food by-products is their high moisture content. This has brought about the necessity of dewatering food waste for any potential re-use for certain disposal options. A laboratory system for experimentally characterizing electro-kinetic dewatering of food by-products was evaluated. The bench scale system, which is an augmented filter press, was used to investigate the dewatering at constant voltage. Five food by-products (brewer’s spent grain, cauliflower trimmings, mango peel, orange peel, and melon peel) were studied. The results indicated that electro-kinetic dewatering combined with mechanical dewatering can reduce the percentage of moisture from 78% to 71% for brewer’s spent grain, from 77% to 68% for orange peel, from 80% to 73% for mango peel, from 91% to 74% for melon peel, and from 92% to 80% for cauliflower trimmings. The total moisture reduction showed a correlation with electrical conductivity (R2¼0.89). The energy consumption of every sample was evaluated and was found to be up to 60 times more economical compared to thermal processing

    Prediction Space Weather Using an Asymmetric Cone Model for Halo CMEs

    Full text link
    Halo coronal mass ejections (HCMEs) are responsible of the most severe geomagnetic storms. A prediction of their geoeffectiveness and travel time to Earth's vicinity is crucial to forecast space weather. Unfortunately coronagraphic observations are subjected to projection effects and do not provide true characteristics of CMEs. Recently, Michalek (2006, {\it Solar Phys.}, {\bf237}, 101) developed an asymmetric cone model to obtain the space speed, width and source location of HCMEs. We applied this technique to obtain the parameters of all front-sided HCMEs observed by the SOHO/LASCO experiment during a period from the beginning of 2001 until the end of 2002 (solar cycle 23). These parameters were applied for the space weather forecast. Our study determined that the space speeds are strongly correlated with the travel times of HCMEs within Earth's vicinity and with the magnitudes related to geomagnetic disturbances

    Bipolar molecular outflow of the very low-mass star Par-Lup3-4

    Full text link
    Very low-mass stars are known to have jets and outflows, which is indicative of a scaled-down version of low-mass star formation. However, only very few outflows in very low-mass sources are well characterized. We characterize the bipolar molecular outflow of the very low-mass star Par-Lup3-4, a 0.12 M_{\odot} object known to power an optical jet. We observed Par-Lup3-4 with ALMA in Bands 6 and 7, detecting both the continuum and CO molecular gas. In particular, we studied three main emission lines: CO(2-1), CO(3-2), and 13^{13}CO(3-2). Our observations reveal for the first time the base of a bipolar molecular outflow in a very low-mass star, as well as a stream of material moving perpendicular to the primary outflow of this source. The primary outflow morphology is consistent with the previously determined jet orientation and disk inclination. The outflow mass is 9.5×107M9.5\times10^{-7}\mathrm{M}_{\odot} , with an outflow rate of 4.3×109Myr14.3\times10^{-9}\mathrm{M}_{\odot}\mathrm{yr}^{-1} A new fitting to the spectral energy distribution suggests that Par-Lup3-4 may be a binary system. We have characterized Par-Lup3-4 in detail, and its properties are consistent with those reported in other very low-mass sources. This source provides further evidence that very low-mass sources form as a scaled-down version of low-mass stars.Comment: 20 pages, 11 figures, 5 tables. Accepted in A&

    Labels direct infants’ attention to commonalities during novel category learning

    Get PDF
    Recent studies have provided evidence that labeling can influence the outcome of infants’ visual categorization. However, what exactly happens during learning remains unclear. Using eye-tracking, we examined infants’ attention to object parts during learning. Our analysis of looking behaviors during learning provide insights going beyond merely observing the learning outcome. Both labeling and non-labeling phrases facilitated category formation in 12-month-olds but not 8-month-olds (Experiment 1). Non-linguistic sounds did not produce this effect (Experiment 2). Detailed analyses of infants’ looking patterns during learning revealed that only infants who heard labels exhibited a rapid focus on the object part successive exemplars had in common. Although other linguistic stimuli may also be beneficial for learning, it is therefore concluded that labels have a unique impact on categorization

    The Loss of Telomerase Activity in Highly Differentiated CD8+CD28−CD27− T Cells Is Associated with Decreased Akt (Ser473) Phosphorylation

    Get PDF
    The enzyme telomerase is essential for maintaining the replicative capacity of memory T cells. Although CD28 costimulatory signals can up-regulate telomerase activity, human CD8 + T cells lose CD28 expression after repeated activation. Nevertheless, telomerase is still inducible in CD8 + CD28 − T cells. To identify alternative costimulatory pathways that may be involved, we introduced chimeric receptors containing the signaling domains of CD28, CD27, CD137, CD134, and ICOS in series with the CD3 zeta (ζ) chain into primary human CD8 + T cells. Although CD3 ζ-chain signals alone were ineffective, triggering of all the other constructs induced proliferation and telomerase activity. However, not all CD8 + CD28 − T cells could up-regulate this enzyme. The further fractionation of CD8 + CD28 − T cells into CD8 + CD28 − CD27 + and CD8 + CD28 − CD27 − subsets showed that the latter had significantly shorter telomeres and extremely poor telomerase activity. The restoration of CD28 signaling in CD8 + CD28 − CD27 − T cells could not reverse the low telomerase activity that was not due to decreased expression of human telomerase reverse transcriptase, the enzyme catalytic subunit. Instead, the defect was associated with decreased phosphorylation of the kinase Akt, that phosphorylates human telomerase reverse transcriptase to induce telomerase activity. Furthermore, the defective Akt phosphorylation in these cells was specific for the Ser 473 but not the Thr 308 phosphorylation site of this molecule. Telomerase down-regulation in highly differentiated CD8 + CD28 − CD27 − T cells marks their inexorable progress toward a replicative end stage after activation. This limits the ability of memory CD8 + T cells to be maintained by continuous proliferation in vivo

    Must we measure what we mean?

    Get PDF
    This paper excavates a debate concerning the claims of ordinary language philosophers that took place during the middle of the last century. The debate centers on the status of statements about “what we say”. On one side of the debate, critics of ordinary language philosophy argued that statements about “what we say” should be evaluated as empirical observations about how people do in fact speak, on a par with claims made in the language sciences. By that standard, ordinary language philosophers were not entitled to the claims that they made about what we would say about various topics. On the other side of the debate, defenders of the methods of ordinary language philosophy sought to explain how philosophers can be entitled to statements about what we would say without engaging in extensive observations of how people do in fact use language. In this paper I defend the idea that entitlement to claims about what we say can be had in a way that doesn’t require empirical observation, and I argue that ordinary language philosophers are (at least sometimes) engaged in a different project than linguists or empirically minded philosophers of language, which is subject to different conditions of success

    CARMA Large Area Star Formation Survey: Project Overview with Analysis of Dense Gas Structure and Kinematics in Barnard 1

    Get PDF
    We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N2H+, HCO+, and HCN (J=1-0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7" and spectral resolution near 0.16 km/s. We imaged ~150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N2H+ shows the strongest emission, with morphology similar to cool dust in the region, while HCO+ and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N2H+ velocity dispersions ranging from ~0.05-0.50 km/s across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new non-binary dendrogram algorithm is used to analyze dense gas structures in the N2H+ position-position-velocity (PPV) cube. The projected sizes of dendrogram-identified structures range from about 0.01-0.34 pc. Size-linewidth relations using those structures show that non-thermal line-of-sight velocity dispersion varies weakly with projected size, while rms variation in the centroid velocity rises steeply with projected size. Comparing these relations, we propose that all dense gas structures in Barnard 1 have comparable depths into the sky, around 0.1-0.2 pc; this suggests that over-dense, parsec-scale regions within molecular clouds are better described as flattened structures rather than spherical collections of gas. Science-ready PPV cubes for Barnard 1 molecular emission are available for download.Comment: Accepted to The Astrophysical Journal (ApJ), 51 pages, 27 figures (some with reduced resolution in this preprint); Project website is at http://carma.astro.umd.edu/class
    corecore