178 research outputs found
Mode locking of vortex matter driven through mesoscopic channels
We investigated the driven dynamics of vortices confined to mesoscopic flow
channels by means of a dc-rf interference technique. The observed mode-locking
steps in the -curves provide detailed information on how the number of rows
and lattice structure in the channel change with magnetic field. Minima in flow
stress occur when an integer number of rows is moving coherently, while maxima
appear when incoherent motion of mixed and row configurations is
predominant. Simulations show that the enhanced pinning at mismatch originates
from quasi-static fault zones with misoriented edge dislocations induced by
disorder in the channel edges.Comment: some minor changes were made, 4 pages, 4 figures, accepted for
publication in Phys. Rev. Let
Multiple shear-banding transitions in a supramolecular polymer solution
We report on the nonlinear rheology of a reversible supramolecular polymer based on hydrogen bonding. The coupling between the flow-induced chain alignment and breakage and recombination of bonds between monomers leads to a very unusual flow behavior. Measured velocity profiles indicate three different shear-banding regimes upon increasing shear rate, each with different characteristics. While the first of these regimes has features of a mechanical instability, the second shear-banding regime is related to a shear-induced phase separation and the appearance of birefringent textures. The shear-induced phase itself becomes unstable at very high shear rates, giving rise to a third banding regime
Quasi-chemical Theories of Associated Liquids
It is shown how traditional development of theories of fluids based upon the
concept of physical clustering can be adapted to an alternative local
clustering definition. The alternative definition can preserve a detailed
valence description of the interactions between a solution species and its
near-neighbors, i.e., cooperativity and saturation of coordination for strong
association. These clusters remain finite even for condensed phases. The
simplest theory to which these developments lead is analogous to quasi-chemical
theories of cooperative phenomena. The present quasi-chemical theories require
additional consideration of packing issues because they don't impose lattice
discretizations on the continuous problem. These quasi-chemical theories do not
require pair decomposable interaction potential energy models. Since
calculations may be required only for moderately sized clusters, we suggest
that these quasi-chemical theories could be implemented with computational
tools of current electronic structure theory. This can avoid an intermediate
step of approximate force field generation.Comment: 20 pages, no figures replacement: minor typographical corrections,
four references added, in press Molec. Physics 199
Dynamic ordering and frustration of confined vortex rows studied by mode-locking experiments
The flow properties of confined vortex matter driven through disordered
mesoscopic channels are investigated by mode locking (ML) experiments. The
observed ML effects allow to trace the evolution of both the structure and the
number of confined rows and their match to the channel width as function of
magnetic field. From a detailed analysis of the ML behavior for the case of
3-rows we obtain ({\it i}) the pinning frequency , ({\it ii}) the onset
frequency for ML ( ordering velocity) and ({\it iii}) the
fraction of coherently moving 3-row regions in the channel. The
field dependence of these quantities shows that, at matching, where is
maximum, the pinning strength is small and the ordering velocity is low, while
at mismatch, where is small, both the pinning force and the ordering
velocity are enhanced. Further, we find that , consistent
with the dynamic ordering theory of Koshelev and Vinokur. The microscopic
nature of the flow and the ordering phenomena will also be discussed.Comment: 10 pages, 7 figure, submitted to PRB. Discussion has been improved
and a figure has been adde
Flux flow of Abrikosov-Josephson vortices along grain boundaries in high-temperature superconductors
We show that low-angle grain boundaries (GB) in high-temperature
superconductors exhibit intermediate Abrikosov vortices with Josephson cores,
whose length along GB is smaller that the London penetration depth, but
larger than the coherence length. We found an exact solution for a periodic
vortex structure moving along GB in a magnetic field and calculated the
flux flow resistivity , and the nonlinear voltage-current
characteristics. The predicted dependence describes well our
experimental data on unirradiated and irradiated
bicrystals, from which the core size , and the intrinsic depairing
density on nanoscales of few GB dislocations were measured for the
first time. The observed temperature dependence of
indicates a significant order parameter suppression in current channels between
GB dislocation cores.Comment: 5 pages 5 figures. Phys. Rev. Lett. (accepted
Incommensuration Effects and Dynamics in Vortex Chains
We examine the motion of one-dimensional (1D) vortex matter embedded in a 2D
vortex system with weak pinning using numerical simulations. We confirm the
conjecture of Matsuda et al. [Science 294, 2136 (2001)] that the onset of the
temperature induced motion of the chain is due to an incommensuration effect of
the chain with the periodic potential created by the bulk vortices. In
addition, under an applied driving force we find a two stage depinning
transition, where the initial depinning of the vortex chain occurs through
soliton like pulses. When an ac drive is added to the dc drive, we observe
phase locking of the moving vortex chain.Comment: 4 pages, 4 postscript figure
Fracture of jammed colloidal suspensions
Concentrated colloidal suspensions display dramatic rises in viscosity, leading to jamming and granulation, with increasing shear rate. It has been proposed that these effects result from inter particle friction, as lubrication forces are overcome. This suggests the jamming of concentrated colloidal suspensions should exhibit some shared phenomenology with macroscopic granular systems where friction leads to two different types of jammed state. Here we show that transient rheological measurements can be used to probe the processes of granulation in concentrated colloidal suspensions. Our results support the idea that frictional contacts are created between jammed particles. The jamming behaviour displays two qualitatively different regimes separated by a critical strain rate with qualitatively different types of fracture/break up behaviour. In the lower strain rate regime, it is found that vibrations can be used to control jamming and granulation, resulting in a flowable fluid
Development of a compounded propofol nanoemulsion using multiple non-invasive process analytical technologies
Propofol is the preferred anaesthetic for induction and maintenance of sedation in critically ill mechanically ventilated COVID-19 patients. However, during the outbreak of the COVID-19 pandemic, regular supply chains could not keep up with the sudden increase in global demand, causing drug shortages. Propofol is formulated as an oil-in-water emulsion which is administered intravenously. This study explores the extemporaneous preparation of a propofol emulsion without specialized manufacturing equipment to temporally alleviate such shortages. A commercially available lipid emulsion (IVLE, SMOFlipid 20 %), intended for parenteral nutrition, was used to create a propofol loaded nanoemulsion via addition of liquid propofol drug substance and subsequent mixing. Critical quality attributes such as mean droplet size and the volume-weighted percentage of large-diameter (>5µm) droplets were studied. The evolution of droplet size and propofol distribution was monitored in situ and non-destructively, maintaining sterility, using Spatially Resolved Dynamic Light Scattering and Near Infrared Spectroscopy, respectively. Using response surface methodology, an optimum was found for a 4 % w/v propofol formulation with a ∼15 min mixing time in a flask shaker at a 40° shaking angle. This study shows that extemporaneous compounding is a viable option for emergency supply of propofol drug product during global drug shortages
Cost-effectiveness of postural exercise therapy versus physiotherapy in computer screen-workers with early non-specific work-related upper limb disorders (WRULD); a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Exercise therapies generate substantial costs in computer workers with non-specific work-related upper limb disorders (WRULD).</p> <p>Aims</p> <p>To study if postural exercise therapy is cost-effective compared to regular physiotherapy in screen-workers with early complaints, both from health care and societal perspective.</p> <p>Methods</p> <p>Prospective randomized trial including cost-effectiveness analysis; one year follow-up. Participants: Eighty-eight screen-workers with early non-specific WRULD; six drop-outs. Interventions: A ten week postural exercise program versus regular physiotherapy. Outcome measures: Effectiveness measures: Pain: visual analogous scale (VAS), self-perceived WRULD (yes/no). Functional outcome: Disabilities of Arm, Shoulder and Hand- Dutch Language Version (DASH-DLV). Quality of life outcome: EQ-5D.</p> <p>Economic measures: health care costs including patient and family costs and productivity costs resulting in societal costs. Cost-effectiveness measures: health care costs and societal costs related to the effectiveness measures. Outcome measures were assessed at baseline; three, six and twelve months after baseline.</p> <p>Results</p> <p>At baseline both groups were comparable for baseline characteristics except scores on the Pain Catastrophizing Scale and comparable for costs. No significant differences between the groups concerning effectiveness at one year follow-up were found. Effectiveness scores slightly improved over time. After one year 55% of participants were free of complaints. After one year the postural exercise group had higher mean total health care costs, but lower productivity costs compared to the physiotherapy group. Mean societal costs after one year (therefore) were in favor of postural exercise therapy [- €622; 95% CI -2087; +590)]. After one year, only self- perceived WRULD seemed to result in acceptable cost-effectiveness of the postural exercise strategy over physiotherapy; however the probability of acceptable cost-effectiveness did not exceed 60%.</p> <p>Considering societal costs related to QALYs, postural exercise therapy had a probability of over 80% to be cost-effective over a wide range of cost-effectiveness ceiling ratios; however based on a marginal QALY-difference of 0.1 over a 12 month time frame.</p> <p>Conclusion</p> <p>Although our trial failed to find significant differences in VAS, QALYs and ICERs based on VAS and QALYs at one-year follow-up, CEACs suggest that postural exercise therapy according to Mensendieck/Cesar has a higher probability of being cost-effective compared to regular physiotherapy; however further research is required.</p> <p>Trial registration</p> <p>ISRCTN 15872455</p
- …