1,361 research outputs found

    Antihydrogen studies in ALPHA

    Get PDF
    he ALPHA experiment studies antihydrogen as a means to investigate the symmetry of matter and antimatter. Spectroscopic studies of the anti-atom hold the promise of the most precise direct comparisons of matter and antimatter possible. ALPHA was the first to trap antihydrogen in a magnetic trap, allowing the first ever detection of atomic transitions in an anti-atom. More recently, through stochastic heating, we have also been able to put a new limit on the charge neutrality of antihydrogen. ALPHA is currently preparing to perform the first laser-spectroscopy of antihydrogen, hoping to excite the 2s state using a two-photon transition from the 1s state. We discuss the recent results as well as the key developments that led to these successes and discuss how we are preparing to perform the first laser-spectroscopy. We will also discuss plans to use our novel technique for gravitational tests on antihydrogen for a direct measurement of the sign of the gravitational force on antihydrogen

    Cerebral Infarction Associated with Cocaine Use

    Get PDF
    We report the case of a young man with an acute infarction of the left putamen and caudate nucleus, whose symptoms appeared six hours after intranasal use of approximately 0.5 g of cocaine hydrochloride. It seems probable that in this patient cocaine consumption played a role in the development of stroke

    Absolute quantum yield measurements of fluorescent proteins using a plasmonic nanocavity

    Get PDF
    One of the key photophysical properties of fluorescent proteins that is most difficult to measure is the quantum yield. It describes how efficiently a fluorophore converts absorbed light into fluorescence. Its measurement using conventional methods become particularly problematic when it is unknown how many of the proposedly fluorescent molecules of a sample are indeed fluorescent (for example due to incomplete maturation, or the presence of photophysical dark states). Here, we use a plasmonic nanocavity-based method to measure absolute quantum yield values of commonly used fluorescent proteins. The method is calibration-free, does not require knowledge about maturation or potential dark states, and works on minute amounts of sample. The insensitivity of the nanocavity-based method to the presence of non-luminescent species allowed us to measure precisely the quantum yield of photo-switchable proteins in their on-state and to analyze the origin of the residual fluorescence of protein ensembles switched to the dark state

    Spatio-temporal crime hotspots and the ambient population

    Get PDF
    It is well known that, due to that inherent differences in their underlying causal mechanisms, different types of crime will have variable impacts on different groups of people. Furthermore, the locations of vulnerable groups of people are highly temporally dynamic. Hence an accurate estimate of the true population at risk in a given place and time is vital for reliable crime rate calculation and hotspot generation. However, the choice of denominator is fraught with difficulty because data describing popular movements, rather than simply residential location, are limited. This research will make use of new ‘crowd-sourced’ data in an attempt to create more accurate estimates of the population at risk for mobile crimes such as street robbery. Importantly, these data are both spatially and temporally referenced and can therefore be used to estimate crime rate significance in both space and time. Spatio-temporal cluster hunting techniques will be used to identify crime hotspots that are significant given the size of the ambient population in the area at the time

    Search For Trapped Antihydrogen

    Get PDF
    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.Comment: 12 pages, 7 figure

    Intra-week spatial-temporal patterns of crime

    Get PDF
    Since its original publication, routine activity theory has proven most instructive for understanding temporal patterns in crime. The most prominent of the temporal crime patterns investigated is seasonality: crime (most often assault) increases during the summer months and decreases once routine activities are less often outside. Despite the rather widespread literature on the seasonality of crime, there is very little research investigating temporal patterns of crime at shorter time intervals such as within the week or even within the day. This paper contributes to this literature through a spatial-temporal analysis of crime patterns for different days of the week. It is found that temporal patterns are present for different days of the week (more crime on weekends, as would be expected) and there is a spatial component to that temporal change. Specifically, aside from robbery and sexual assault at the micro-spatial unit of analysis (street segments) the spatial patterns of crime changed. With regard to the spatial pattern changes, we found that assaults and theft from vehicle had their spatial patterns change in predictable ways on Saturdays: assaults increased in the bar district and theft from vehicles increased in the downtown and recreational car park areas

    Production of antihydrogen at reduced magnetic field for anti-atom trapping

    Get PDF
    We have demonstrated production of antihydrogen in a 1,,T solenoidal magnetic field. This field strength is significantly smaller than that used in the first generation experiments ATHENA (3,,T) and ATRAP (5,,T). The motivation for using a smaller magnetic field is to facilitate trapping of antihydrogen atoms in a neutral atom trap surrounding the production region. We report the results of measurements with the ALPHA (Antihydrogen Laser PHysics Apparatus) device, which can capture and cool antiprotons at 3,,T, and then mix the antiprotons with positrons at 1,,T. We infer antihydrogen production from the time structure of antiproton annihilations during mixing, using mixing with heated positrons as the null experiment, as demonstrated in ATHENA. Implications for antihydrogen trapping are discussed

    Changes in Greenland’s peripheral glaciers linked to the North Atlantic Oscillation

    Get PDF
    Glaciers and ice caps peripheral to the main Greenland Ice Sheet contribute markedly to sea-level rise1,2,3. Their changes and variability, however, have been difficult to quantify on multi-decadal timescales due to an absence of long-term data4. Here, using historical aerial surveys, expedition photographs, spy satellite imagery and new remote-sensing products, we map glacier length fluctuations of approximately 350 peripheral glaciers and ice caps in East and West Greenland since 1890. Peripheral glaciers are found to have recently undergone a widespread and significant retreat at rates of 12.2 m per year and 16.6 m per year in East and West Greenland, respectively; these changes are exceeded in severity only by the early twentieth century post-Little-Ice-Age retreat. Regional changes in ice volume, as reflected by glacier length, are further shown to be related to changes in precipitation associated with the North Atlantic Oscillation (NAO), with a distinct east–west asymmetry; positive phases of the NAO increase accumulation, and thereby glacier growth, in the eastern periphery, whereas opposite effects are observed in the western periphery. Thus, with projected trends towards positive NAO in the future5,6, eastern peripheral glaciers may remain relatively stable, while western peripheral glaciers will continue to diminish
    • …
    corecore