4,257 research outputs found

    Charge separation instability in an unmagnetized disk plasma around a Kerr black hole

    Full text link
    In almost all of plasma theories for astrophysical objects, we have assumed the charge quasi-neutrality of unmagnetized plasmas in global scales. This assumption has been justified because if there is a charged plasma, it induces electric field which attracts the opposite charge, and this opposite charge reduces the charge separation. Here, we report a newly discovered instability which causes a charge separation in a rotating plasma inside of an innermost stable circular orbit (ISCO) around a black hole. The growth rate of the instability is smaller than that of the disk instability even in the unstable disk region and is forbidden in the stable disk region outside of the ISCO. However, this growth rate becomes comparable to that of the disk instability when the plasma density is much lower than a critical density inside of the ISCO. In such case, the charge separation instability would become apparent and cause the charged accretion into the black hole, thus charge the hole up.Comment: 15pages, 1 figur

    Spheromak formation and sustainment studies at the sustained spheromak physics experiment using high-speed imaging and magnetic diagnostics

    Get PDF
    A high-speed imaging system with shutter speeds as fast as 2 ns and double frame capability has been used to directly image the formation and evolution of the sustained spheromak physics experiment (SSPX) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)]. Reproducible plasma features have been identified with this diagnostic and divided into three groups, according to the stage in the discharge at which they occur: (i) breakdown and ejection, (ii) sustainment, and (iii) decay. During the first stage, plasma descends into the flux conserver shortly after breakdown and a transient plasma column is formed. The column then rapidly bends and simultaneously becomes too dim to photograph a few microseconds after formation. It is conjectured here that this rapid bending precedes the transfer of toroidal to poloidal flux. During sustainment, a stable plasma column different from the transient one is observed. It has been possible to measure the column diameter and compare it to CORSICA [A. Tarditi et al., Contrib. Plasma Phys. 36, 132 (1996)], a magnetohydrodynamic equilibrium reconstruction code which showed good agreement with the measurements. Elongation and velocity measurements were made of cathode patterns also seen during this stage, possibly caused by pressure gradients or E×B drifts. The patterns elongate in a toroidal-only direction which depends on the magnetic-field polarity. During the decay stage the column diameter expands as the current ramps down, until it eventually dissolves into filaments. With the use of magnetic probes inserted in the gun region, an X point which moved axially depending on current level and toroidal mode number was observed in all the stages of the SSPX plasma discharge

    Basic, simple and extendable kinetic model of protein synthesis

    Full text link
    Protein synthesis is one of the most fundamental biological processes, which consumes a significant amount of cellular resources. Despite existence of multiple mathematical models of translation, varying in the level of mechanistical details, surprisingly, there is no basic and simple chemical kinetic model of this process, derived directly from the detailed kinetic model. One of the reasons for this is that the translation process is characterized by indefinite number of states, thanks to existence of polysomes. We bypass this difficulty by applying a trick consisting in lumping multiple states of translated mRNA into few dynamical variables and by introducing a variable describing the pool of translating ribosomes. The simplest model can be solved analytically under some assumptions. The basic and simple model can be extended, if necessary, to take into account various phenomena such as the interaction between translating ribosomes, limited amount of ribosomal units or regulation of translation by microRNA. The model can be used as a building block (translation module) for more complex models of cellular processes. We demonstrate the utility of the model in two examples. First, we determine the critical parameters of the single protein synthesis for the case when the ribosomal units are abundant. Second, we demonstrate intrinsic bi-stability in the dynamics of the ribosomal protein turnover and predict that a minimal number of ribosomes should pre-exists in a living cell to sustain its protein synthesis machinery, even in the absence of proliferation.Comment: 22 pages, 9 figure

    Mass for Plasma Photons from Gauge Symmetry Breaking

    Full text link
    We derive the effective masses for photons in unmagnetized plasma waves using a quantum field theory with two vector fields (gauge fields). In order to properly define the quantum field degrees of freedom we re-derive the classical wave equations on light-front gauge. This is needed because the usual scalar potential of electromagnetism is, in quantum field theory, not a physical degree of freedom that renders negative energy eigenstates. We also consider a background local fluid metric that allows for a covariant treatment of the problem. The different masses for the longitudinal (plasmon) and transverse photons are in our framework due to the local fluid metric. We apply the mechanism of mass generation by gauge symmetry breaking recently proposed by the authors by giving a non-trivial vacuum-expectation-value to the second vector field (gauge field). The Debye length λD\lambda_D is interpreted as an effective compactification length and we compute an explicit solution for the large gauge transformations that correspond to the specific mass eigenvalues derived here. Using an usual quantum field theory canonical quantization we obtain the usual results in the literature. Although none of these ingredients are new to physicist, as far as the authors are aware it is the first time that such constructions are applied to Plasma Physics. Also we give a physical interpretation (and realization) for the second vector field in terms of the plasma background in terms of known physical phenomena. Addendum: It is given a short proof that equation (10) is wrong, therefore equations (12-17) are meaningless. The remaining results are correct being generic derivations for nonmagnetized plasmas derived in a covariant QFT framework.Comment: v1: 1+6 pages v2: Several discussions rewritten; Abstract rewritten; References added; v3: includes Addendu

    Dust-driven Dynamos in Accretion Disks

    Get PDF
    Magnetically driven astrophysical jets are related to accretion and involve toroidal magnetic field pressure inflating poloidal magnetic field flux surfaces. Examination of particle motion in combined gravitational and magnetic fields shows that these astrophysical jet toroidal and poloidal magnetic fields can be powered by the gravitational energy liberated by accreting dust grains that have become positively charged by emitting photo-electrons. Because a dust grain experiences magnetic forces after becoming charged, but not before, charging can cause irreversible trapping of the grain so dust accretion is a consequence of charging. Furthermore, charging causes canonical angular momentum to replace mechanical angular momentum as the relevant constant of the motion. The resulting effective potential has three distinct classes of accreting particles distinguished by canonical angular momentum, namely (i) "cyclotron-orbit", (ii) "Speiser-orbit", and (iii) "zero canonical angular momentum" particles. Electrons and ions are of class (i) but depending on mass and initial orbit inclination, dust grains can be of any class. Light-weight dust grains develop class (i) orbits such that the grains are confined to nested poloidal flux surfaces, whereas grains with a critical weight such that they experience comparable gravitational and magnetic forces can develop class (ii) or class (iii) orbits, respectively producing poloidal and toroidal field dynamos.Comment: 70 pages, 16 figure

    Understanding the dynamics of photoionization-induced solitons in gas-filled hollow-core photonic crystal fibers

    Full text link
    We present in detail our developed model [Saleh et al., Phys. Rev. Lett. 107] that governs pulse propagation in hollow-core photonic crystal fibers filled by an ionizing gas. By using perturbative methods, we find that the photoionization process induces the opposite phenomenon of the well-known Raman self-frequency red-shift of solitons in solid-core glass fibers, as was recently experimentally demonstrated [Hoelzer et al., Phys. Rev. Lett. 107]. This process is only limited by ionization losses, and leads to a constant acceleration of solitons in the time domain with a continuous blue-shift in the frequency domain. By applying the Gagnon-B\'{e}langer gauge transformation, multi-peak `inverted gravity-like' solitary waves are predicted. We also demonstrate that the pulse dynamics shows the ejection of solitons during propagation in such fibers, analogous to what happens in conventional solid-core fibers. Moreover, unconventional long-range non-local interactions between temporally distant solitons, unique of gas plasma systems, are predicted and studied. Finally, the effects of higher-order dispersion coefficients and the shock operator on the pulse dynamics are investigated, showing that the resonant radiation in the UV [Joly et al., Phys. Rev. Lett. 106] can be improved via plasma formation.Comment: 9 pages, 10 figure

    Laboratory demonstration of slow-rise to fast-acceleration of arched magnetic flux ropes

    Get PDF
    We demonstrate the slow rise to fast acceleration of an arched plasma-filled magnetic flux rope. The flux rope expansion is inhibited by an externally applied customizable strapping field. When the strapping field is not too strong and not too weak, expansion forces build up while the flux rope is in the strapping field region. When the flux rope moves to a critical height beyond the peak strapping field region, the plasma accelerates quickly corresponding to the observed slow rise to fast acceleration of solar eruptions. This behavior is in agreement with the predictions of the torus instability

    Numerical study of jets produced by conical wire arrays on the Magpie pulsed power generator

    Full text link
    The aim of this work is to model the jets produced by conical wire arrays on the MAGPIE generator, and to design and test new setups to strengthen the link between laboratory and astrophysical jets. We performed the modelling with direct three-dimensional magneto-hydro-dynamic numerical simulations using the code GORGON. We applied our code to the typical MAGPIE setup and we successfully reproduced the experiments. We found that a minimum resolution of approximately 100 is required to retrieve the unstable character of the jet. We investigated the effect of changing the number of wires and found that arrays with less wires produce more unstable jets, and that this effect has magnetic origin. Finally, we studied the behaviour of the conical array together with a conical shield on top of it to reduce the presence of unwanted low density plasma flows. The resulting jet is shorter and less dense.Comment: Accepted for publication in Astrophysics & Space Science. HEDLA 2010 conference procedings. Final pubblication will be available on Springe

    HSD17B13 and other liver fat-modulating genes predict development of hepatocellular carcinoma among HCV-positive cirrhotics with and without viral clearance after DAA treatment

    Get PDF
    Background: Genetic predisposition to accumulate liver fat (expressed by a polygenic risk score, GRS, based on the number of at-risk alleles of PNPLA3, TM6SF2, MBOAT7 and GCKR) may influence the probability of developing hepatocellular carcinoma (HCC) after hepatitis C treatment. Whether this holds true taking into account carriage of the HSD17B13:TA splice variant, also affecting lipogenesis, and achievement of viral clearance (SVR), is unknown. Methods: PNPLA3, TM6SF2, MBOAT7, GCKR and HSD17B13 variants were determined in a cohort of 328 cirrhotic patients free of HCC before starting treatment with direct acting antivirals (DAA). Results: SVR in the study cohort was 96%. At the end of follow-up, N = 21 patients had been diagnosed an HCC; none of the genes included in the GRS was individually associated with HCC development. However, in a Cox proportional hazards model, a GRS > 0.457 predicted HCC independently of sex, diabetes, albumin, INR and FIB4. The fit of the model improved adding treatment outcome and carriage of the HSD17B13:TA splice variant, with sex, GRS > 0.457, HSD17B13:TA splice variant and failure to achieve an SVR (hazard ratio = 6.75, 4.24, 0.24 and 7.7, respectively) being independent predictors of HCC. Conclusion: Our findings confirm that genes modulating liver fat and lipogenesis are important risk factors for HCC development among cirrhotics C treated with DAA
    corecore