8,322 research outputs found

    Radion Dynamics and Phenomenology in the Linear Dilaton Model

    Full text link
    We investigate the properties of the radion in the 5D linear dilaton model arising from Little String Theory. A Goldberger-Wise type mechanism is used to stabilise a large interbrane distance, with the dilaton now playing the role of the stabilising field. We consider the coupled fluctuations of the metric and dilaton fields and identify the physical scalar modes of the system. The wavefunctions and masses of the radion and Kaluza-Klein modes are calculated, giving a radion mass of order the curvature scale. As a result of the direct coupling between the dilaton and Standard Model fields, the radion couples to the SM Lagrangian, in addition to the trace of the energy-momentum tensor. The effect of these additional interaction terms on the radion decay modes is investigated, with a notable increase in the branching fraction to photons. We also consider the effects of a non-minimal Higgs coupling to gravity, which introduces a mixing between the Higgs and radion modes. Finally, we calculate the production cross section of the radion at the LHC and use the current Higgs searches to place constraints on the parameter space.Comment: 28 pages, 7 figures; v2: error in radion-gauge boson Feynman rules corrected, version published in JHE

    Key distillation from quantum channels using two-way communication protocols

    Get PDF
    We provide a general formalism to characterize the cryptographic properties of quantum channels in the realistic scenario where the two honest parties employ prepare and measure protocols and the known two-way communication reconciliation techniques. We obtain a necessary and sufficient condition to distill a secret key using this type of schemes for Pauli qubit channels and generalized Pauli channels in higher dimension. Our results can be applied to standard protocols such as BB84 or six-state, giving a critical error rate of 20% and 27.6%, respectively. We explore several possibilities to enlarge these bounds, without any improvement. These results suggest that there may exist weakly entangling channels useless for key distribution using prepare and measure schemes.Comment: 21 page

    Secrecy content of two-qubit states

    Get PDF
    We analyze the set of two-qubit states from which a secret key can be extracted by single-copy measurements plus classical processing of the outcomes. We introduce a key distillation protocol and give the corresponding necessary and sufficient condition for positive key extraction. Our results imply that the critical error rate derived by Chau, Phys. Rev. A {\bf 66}, 060302 (2002), for a secure key distribution using the six-state scheme is tight. Remarkably, an optimal eavesdropping attack against this protocol does not require any coherent quantum operation.Comment: 5 pages, RevTe

    Long beating wavelength in the Schwarz-Hora effect

    Full text link
    Thirty years ago, H.Schwarz has attempted to modulate an electron beam with optical frequency. When a 50-keV electron beam crossed a thin crystalline dielectric film illuminated with laser light, electrons produced the electron-diffraction pattern not only at a fluorescent target but also at a nonfluorescent target. In the latter case the pattern was of the same color as the laser light (the Schwarz-Hora effect). This effect was discussed extensively in the early 1970s. However, since 1972 no reports on the results of further attempts to repeat those experiments in other groups have appeared, while the failures of the initial such attempts have been explained by Schwarz. The analysis of the literature shows there are several unresolved up to now contradictions between the theory and the Schwarz experiments. In this work we consider the interpretation of the long-wavelength spatial beating of the Schwarz-Hora radiation. A more accurate expression for the spatial period has been obtained, taking into account the mode structure of the laser field within the dielectric film. It is shown that the discrepancy of more than 10% between the experimental and theoretical results for the spatial period cannot be reduced by using the existing quantum models that consider a collimated electron beam.Comment: 3 pages, RevTe

    Transport properties of graphene with one-dimensional charge defects

    Get PDF
    We study the effect of extended charge defects in electronic transport properties of graphene. Extended defects are ubiquitous in chemically and epitaxially grown graphene samples due to internal strains associated with the lattice mismatch. We show that at low energies these defects interact quite strongly with the 2D Dirac fermions and have an important effect in the DC-conductivity of these materials.Comment: 6 pages, 5 figures. published version: one figure, appendix and references adde

    Bayesian stroke modeling details sex biases in the white matter substrates of aphasia

    Get PDF
    Ischemic cerebrovascular events often lead to aphasia. Previous work provided hints that such strokes may affect women and men in distinct ways. Women tend to suffer strokes with more disabling language impairment, even if the lesion size is comparable to men. In 1,401 patients, we isolated data-led representations of anatomical lesion patterns and hand-tailored a Bayesian analytical solution to carefully model the degree of sex divergence in predicting language outcomes ∼3 months after stroke. We located lesion-outcome effects in the left-dominant language network that highlight the ventral pathway as a core lesion focus across different tests of language performance. We provide newly detailed evidence for sex-specific brain-behavior associations in the domain-general networks associated with cortico-subcortical pathways, with unique contributions of the fornix in women and cingular fiber bundles in men. Our collective findings suggest diverging white matter substrates in how stroke causes language deficits in women and men. Clinically acknowledging such sex disparities has the potential to improve personalized treatment for stroke patients worldwide

    Optimality of minimum-error discrimination by the no-signalling condition

    Full text link
    In this work we relate the well-known no-go theorem that two non-orthogonal (mixed) quantum states cannot be perfectly discriminated, to the general principle in physics, the no-signalling condition. In fact, we derive the minimum error in discrimination between two quantum states, using the no-signalling condition.Comment: 4 pages, 1 figur

    Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity

    Full text link
    We show that the Einstein-aether theory of Jacobson and Mattingly (J&M) can be understood in the framework of the metric-affine (gauge theory of) gravity (MAG). We achieve this by relating the aether vector field of J&M to certain post-Riemannian nonmetricity pieces contained in an independent linear connection of spacetime. Then, for the aether, a corresponding geometrical curvature-square Lagrangian with a massive piece can be formulated straightforwardly. We find an exact spherically symmetric solution of our model.Comment: Revtex4, 38 pages, 1 figur
    corecore