8,322 research outputs found
Radion Dynamics and Phenomenology in the Linear Dilaton Model
We investigate the properties of the radion in the 5D linear dilaton model
arising from Little String Theory. A Goldberger-Wise type mechanism is used to
stabilise a large interbrane distance, with the dilaton now playing the role of
the stabilising field. We consider the coupled fluctuations of the metric and
dilaton fields and identify the physical scalar modes of the system. The
wavefunctions and masses of the radion and Kaluza-Klein modes are calculated,
giving a radion mass of order the curvature scale. As a result of the direct
coupling between the dilaton and Standard Model fields, the radion couples to
the SM Lagrangian, in addition to the trace of the energy-momentum tensor. The
effect of these additional interaction terms on the radion decay modes is
investigated, with a notable increase in the branching fraction to photons. We
also consider the effects of a non-minimal Higgs coupling to gravity, which
introduces a mixing between the Higgs and radion modes. Finally, we calculate
the production cross section of the radion at the LHC and use the current Higgs
searches to place constraints on the parameter space.Comment: 28 pages, 7 figures; v2: error in radion-gauge boson Feynman rules
corrected, version published in JHE
Key distillation from quantum channels using two-way communication protocols
We provide a general formalism to characterize the cryptographic properties
of quantum channels in the realistic scenario where the two honest parties
employ prepare and measure protocols and the known two-way communication
reconciliation techniques. We obtain a necessary and sufficient condition to
distill a secret key using this type of schemes for Pauli qubit channels and
generalized Pauli channels in higher dimension. Our results can be applied to
standard protocols such as BB84 or six-state, giving a critical error rate of
20% and 27.6%, respectively. We explore several possibilities to enlarge these
bounds, without any improvement. These results suggest that there may exist
weakly entangling channels useless for key distribution using prepare and
measure schemes.Comment: 21 page
Secrecy content of two-qubit states
We analyze the set of two-qubit states from which a secret key can be
extracted by single-copy measurements plus classical processing of the
outcomes. We introduce a key distillation protocol and give the corresponding
necessary and sufficient condition for positive key extraction. Our results
imply that the critical error rate derived by Chau, Phys. Rev. A {\bf 66},
060302 (2002), for a secure key distribution using the six-state scheme is
tight. Remarkably, an optimal eavesdropping attack against this protocol does
not require any coherent quantum operation.Comment: 5 pages, RevTe
Long beating wavelength in the Schwarz-Hora effect
Thirty years ago, H.Schwarz has attempted to modulate an electron beam with
optical frequency. When a 50-keV electron beam crossed a thin crystalline
dielectric film illuminated with laser light, electrons produced the
electron-diffraction pattern not only at a fluorescent target but also at a
nonfluorescent target. In the latter case the pattern was of the same color as
the laser light (the Schwarz-Hora effect). This effect was discussed
extensively in the early 1970s. However, since 1972 no reports on the results
of further attempts to repeat those experiments in other groups have appeared,
while the failures of the initial such attempts have been explained by Schwarz.
The analysis of the literature shows there are several unresolved up to now
contradictions between the theory and the Schwarz experiments. In this work we
consider the interpretation of the long-wavelength spatial beating of the
Schwarz-Hora radiation. A more accurate expression for the spatial period has
been obtained, taking into account the mode structure of the laser field within
the dielectric film. It is shown that the discrepancy of more than 10% between
the experimental and theoretical results for the spatial period cannot be
reduced by using the existing quantum models that consider a collimated
electron beam.Comment: 3 pages, RevTe
Transport properties of graphene with one-dimensional charge defects
We study the effect of extended charge defects in electronic transport
properties of graphene. Extended defects are ubiquitous in chemically and
epitaxially grown graphene samples due to internal strains associated with the
lattice mismatch. We show that at low energies these defects interact quite
strongly with the 2D Dirac fermions and have an important effect in the
DC-conductivity of these materials.Comment: 6 pages, 5 figures. published version: one figure, appendix and
references adde
Bayesian stroke modeling details sex biases in the white matter substrates of aphasia
Ischemic cerebrovascular events often lead to aphasia. Previous work provided hints that such strokes may affect women and men in distinct ways. Women tend to suffer strokes with more disabling language impairment, even if the lesion size is comparable to men. In 1,401 patients, we isolated data-led representations of anatomical lesion patterns and hand-tailored a Bayesian analytical solution to carefully model the degree of sex divergence in predicting language outcomes ∼3 months after stroke. We located lesion-outcome effects in the left-dominant language network that highlight the ventral pathway as a core lesion focus across different tests of language performance. We provide newly detailed evidence for sex-specific brain-behavior associations in the domain-general networks associated with cortico-subcortical pathways, with unique contributions of the fornix in women and cingular fiber bundles in men. Our collective findings suggest diverging white matter substrates in how stroke causes language deficits in women and men. Clinically acknowledging such sex disparities has the potential to improve personalized treatment for stroke patients worldwide
Optimality of minimum-error discrimination by the no-signalling condition
In this work we relate the well-known no-go theorem that two non-orthogonal
(mixed) quantum states cannot be perfectly discriminated, to the general
principle in physics, the no-signalling condition. In fact, we derive the
minimum error in discrimination between two quantum states, using the
no-signalling condition.Comment: 4 pages, 1 figur
Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity
We show that the Einstein-aether theory of Jacobson and Mattingly (J&M) can
be understood in the framework of the metric-affine (gauge theory of) gravity
(MAG). We achieve this by relating the aether vector field of J&M to certain
post-Riemannian nonmetricity pieces contained in an independent linear
connection of spacetime. Then, for the aether, a corresponding geometrical
curvature-square Lagrangian with a massive piece can be formulated
straightforwardly. We find an exact spherically symmetric solution of our
model.Comment: Revtex4, 38 pages, 1 figur
- …