153 research outputs found

    Genome-wide copy number variation (CNV) in patients with autoimmune Addison's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Addison's disease (AD) is caused by an autoimmune destruction of the adrenal cortex. The pathogenesis is multi-factorial, involving genetic components and hitherto unknown environmental factors. The aim of the present study was to investigate if gene dosage in the form of copy number variation (CNV) could add to the repertoire of genetic susceptibility to autoimmune AD.</p> <p>Methods</p> <p>A genome-wide study using the Affymetrix GeneChip<sup>Ā® </sup>Genome-Wide Human SNP Array 6.0 was conducted in 26 patients with AD. CNVs in selected genes were further investigated in a larger material of patients with autoimmune AD (n = 352) and healthy controls (n = 353) by duplex Taqman real-time polymerase chain reaction assays.</p> <p>Results</p> <p>We found that low copy number of <it>UGT2B28 </it>was significantly more frequent in AD patients compared to controls; conversely high copy number of <it>ADAM3A </it>was associated with AD.</p> <p>Conclusions</p> <p>We have identified two novel CNV associations to <it>ADAM3A </it>and <it>UGT2B28 </it>in AD. The mechanism by which this susceptibility is conferred is at present unclear, but may involve steroid inactivation (<it>UGT2B28</it>) and T cell maturation (<it>ADAM3A</it>). Characterization of these proteins may unravel novel information on the pathogenesis of autoimmunity.</p

    Targeting a Newly Established Spontaneous Feline Fibrosarcoma Cell Line by Gene Transfer

    Get PDF
    Fibrosarcoma is a deadly disease in cats and is significantly more often located at classical vaccine injections sites. More rare forms of spontaneous non-vaccination site (NSV) fibrosarcomas have been described and have been found associated to genetic alterations. Purpose of this study was to compare the efficacy of adenoviral gene transfer in NVS fibrosarcoma. We isolated and characterized a NVS fibrosarcoma cell line (Cocca-6A) from a spontaneous fibrosarcoma that occurred in a domestic calico cat. The feline cells were karyotyped and their chromosome number was counted using a Giemsa staining. Adenoviral gene transfer was verified by western blot analysis. Flow cytometry assay and Annexin-V were used to study cell-cycle changes and cell death of transduced cells. Cocca-6A fibrosarcoma cells were morphologically and cytogenetically characterized. Giemsa block staining of metaphase spreads of the Cocca-6A cells showed deletion of one of the E1 chromosomes, where feline p53 maps. Semi-quantitative PCR demonstrated reduction of p53 genomic DNA in the Cocca-6A cells. Adenoviral gene transfer determined a remarkable effect on the viability and growth of the Cocca-6A cells following single transduction with adenoviruses carrying Mda-7/IL-24 or IFN-Ī³ or various combination of RB/p105, Ras-DN, IFN-Ī³, and Mda-7 gene transfer. Therapy for feline fibrosarcomas is often insufficient for long lasting tumor eradication. More gene transfer studies should be conducted in order to understand if these viral vectors could be applicable regardless the origin (spontaneous vs. vaccine induced) of feline fibrosarcomas

    Synthesis of reaction-adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure-directing agents

    Full text link
    [EN] Catalysis with enzymes and zeolites have in common the presence of well-defined single active sites and pockets/cavities where the reaction transition states can be stabilized by longer-range interactions. We show here that for a complex reaction, such as the conversion of methanol-to-olefins (MTO), it is possible to synthesize reaction-adapted zeolites by using mimics of the key molecular species involved in the MTO mechanism. Effort has focused on the intermediates of the paring mechanism because the paring is less favoured energetically than the side-chain route. All the organic structure-directing agents based on intermediate mimics crystallize cage-based small-pore zeolitic materials, all of them capable of performing the MTO reaction. Among the zeolites obtained, RTH favours the whole reaction steps following the paring route and gives the highest propylene/ethylene ratio compared to traditional CHA-related zeolites (3.07 and 0.86, respectively).Li, C.; Paris, C.; MartĆ­nez-Triguero, J.; Boronat Zaragoza, M.; Moliner Marin, M.; Corma CanĆ³s, A. (2018). Synthesis of reaction-adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure-directing agents. Nature Catalysis. 1(7):547-554. https://doi.org/10.1038/s41929-018-0104-7S54755417Stocker, M. Methanol-to-hydrocarbons: catalytic materials and their behavior. Micro. Mesopor. Mater. 29, 3ā€“48 (1999).Tian, P., Wei, Y., Ye, M. & Liu, Z. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 5, 1922ā€“1938 (2015).Ilias, S. & Bhan, A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catal. 3, 18ā€“31 (2013).Olsbye, U. et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew. Chem. Int. Ed. 24, 5810ā€“5831 (2012).Hemelsoet, K., Van der Mynsbrugge, J., De Wispelaere, K., Waroquier, M. & Van Speybroeck, V. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment. ChemPhysChem 14, 1526ā€“1545 (2013).Song, W., Haw, J. F., Nicholas, J. B. & Heneghan, C. S. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34. J. Am. Chem. Soc. 122, 10726ā€“10727 (2000).Arstad, B. & Kolboe, S. The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction. J. Am. Chem. Soc. 123, 8137ā€“8138 (2001).Xu, T. et al. Synthesis of a benzenium ion in a zeolite with use of a catalytic flow reactor. J. Am. Chem. Soc. 120, 4025ā€“4026 (1998).Song, W., Nicholas, J. B., Sassi, A. & Haw, J. F. Synthesis of the heptamethylbenzene cation in zeolite beta: in situ NMR and theory. Catal. Lett. 81, 49ā€“53 (2002).Xu, S. et al. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the metahnol-to-olefin reaction over chabazite zeolites. Angew. Chem. Int. Ed. 52, 11564ā€“11568 (2013).Chen, J. et al. Elucidating the olefin formation mechanism in the methanol to olefin reaction over AlPO-18 and SAPO-18. Catal. Sci. Tech. 4, 3268ā€“3277 (2014).Haw, J. F. et al. Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. J. Am. Chem. Soc. 122, 4763ā€“4775 (2000).Svelle, S. et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5:ā€‰ethene formation is mechanistically separated from the formation of higher alkenes. J. Am. Chem. Soc. 128, 14770ā€“14771 (2006).Teketel, S., Olsbye, U., Lillerud, K. P., Beato, P. & S., S. Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites. Micro. Mesopor. Mater. 136, 33ā€“41 (2010).Zhang, M. et al. Methanol conversion on ZSM-22, ZSM-35 and ZSM-5 zeolites: effects of 10-membered ring zeolite structures on methylcyclopentenyl cations and dual cycle mechanism. RSC Adv. 6, 95855ā€“95864 (2016).Sassi, A. et al. Methylbenzene chemistry on zeolite HBeta:ā€‰multiple insights into methanol-to-olefin catalysis. J. Phys. Chem. B 106, 2294ā€“2303 (2002).Sassi, A., Wildman, M. A. & Haw, J. F. Reactions of butylbenzene isomers on zeolite HBeta:ā€‰methanol-to-olefins hydrocarbon pool chemistry and secondary reactions of olefins. J. Phys. Chem. B 106, 8768ā€“8773 (2002).BjĆørgen, M., Olsbye, U., Petersen, D. & Kolboe, S. The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions over zeolite H-beta. J. Catal. 221, 1ā€“10 (2004).McCann, D. M. et al. A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment. Angew. Chem. Int. Ed. 47, 5179ā€“5182 (2008).Arstad, B., Kolboe, S. & Swang, O. Theoretical study of the heptamethylbenzenium ion. intramolecular isomerizations and C2, C3, C4 alkene elimination. J. Phys. Chem. A 109, 8914ā€“8922 (2005).De Wispelaere, K., Hemelsoet, K., Waroquier, M. & Van Speybroeck, V. Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34. J. Catal. 305, 76ā€“80 (2013).Wang, C. M., Wang, Y. D. & Xie, Z. K. Verification of the dual cycle mechanism for methanol-to-olefin conversion in HSAPO-34: a methylbenzene-based cycle from DFT calculations. Catal. Sci. Technol. 4, 2631ā€“2638 (2014).Wang, C. M., Wang, Y. D., Liu, H. X., Xie, Z. K. & Liu, Z. P. Theoretical insight into the minor role of paring mechanism in the methanol-to-olefins conversion within HSAPO-34 catalyst. Micro. Mesopor. Mater. 158, 264ā€“271 (2012).Ilias, S. & Bhan, A. The mechanism of aromatic dealkylation in methanol-to-hydrocarbons conversion on H-ZSM-5: What are the aromatic precursors to light olefins? J. Catal. 311, 6ā€“16 (2014).Erichsen, M. W. et al. Conclusive evidence for two unimolecular pathways to zeolite-catalyzed de-alkylation of the heptamethylbenzenium cation. ChemCatChem 7, 4143ā€“4147 (2015).Bhawe, Y. et al. Effect of cage size on the selective conversion of methanol to light olefins. ACS Catal. 2, 2490ā€“2495 (2012).Kang, J. H. et al. Further studies on how the nature of zeolite cavities that are bounded by small pores influences the conversion of methanol to light olefins. ChemPhysChem 19, 412ā€“419 (2018).Martin, N. et al. Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chem. Commun. 52, 6072ā€“6075 (2016).Dusselier, M., Deimund, M. A., Schmidt, J. E. & Davis, M. E. Methanol-to-olefins catalysis with hydrothermally treated zeolite SSZ-39. ACS Catal. 5, 6078ā€“6085 (2015).Yokoi, T., Yoshioka, M., Imai, H. & Tatsumi, T. Diversification of RTH-type zeolite and its catalytic application. Angew. Chem. Int. Ed. 48, 9884ā€“9887 (2009).Ji, Y., Deimund, M. A., Bhawe, Y. & Davis, M. E. Organic-free synthesis of CHA-type zeolite catalysts for the methanol-to-olefins reaction. ACS Catal. 5, 4456ā€“4465 (2015).Liu, M. et al. Differences in Al distribution and acidic properties between RTH-type zeolites synthesized with OSDAs and without OSDAs. Phys. Chem. Chem. Phys. 16, 4155ā€“4164 (2014).Gallego, E. M. et al. ā€œAb initioā€ synthesis of zeolites for preestablished catalytic reactions. Science 355, 1051ā€“1054 (2017).Zones, S. I. & Nakagawa, Y. Use of modified zeolites as reagents influencing nucleation in zeolite synthesis. Stud. Surf. Sci. Catal. 97, 45ā€“52 (1995).Li, C., Moliner, M. & Corma, A. Building zeolites from pre-crystallized units: nanoscale architecture. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.201711422 (2018).Zones, S. I. Zeolite SSZ-13 and its method of preparation. US Patent 4,544,538 (1985).Li, Z., Navarro, M. T., MartĆ­nez-Triguero, J., Yu, J. & Corma, A. Synthesis of nano-SSZ-13 and its application in the reaction of methanol to olefins. Catal. Sci. Technol. 6, 5856ā€“5863 (2016).Kumar, M., Luo, H., RomĆ”n-Leshkov, Y. & Rimer, J. D. SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control. J. Am. Chem. Soc. 137, 13007ā€“13017 (2015).MartĆ­nez-Franco, R., Cantin, A., Moliner, M. & Corma, A. Synthesis of the small pore silicoaluminophosphate STA-6 by using supramolecular self-assembled organic structure directing agents. Chem. Mater. 26, 4346ā€“4353 (2014).Schmidt, J. E., Deimund, M. A., Xie, D. & Davis, M. E. Synthesis of RTH-type zeolites using a diverse library of imidazolium cations. Chem. Mater. 27, 3756ā€“3762 (2015).Moliner, M., Franch, C., Palomares, E., Grill, M. & Corma, A. Cuā€“SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chem. Commun. 48, 8264ā€“8266 (2012).Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215ā€“241 (2008).Ditchfield, R., Hehre, W. J. & Pople, J. A. Self-consistent molecular orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724ā€“728 (1971).Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J. Chem. Phys. 56, 2257ā€“2261 (1972).Frisch, M. J. et al. Gaussian 09, Revision C.01. (Gaussian, Wallingford, 2009).Van Speybroeck, V. et al. First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study. Chem. Soc. Rev. 43, 7326ā€“7357 (2014)

    Mutational spectrum of the SPG4 (SPAST) and SPG3A (ATL1) genes in Spanish patients with hereditary spastic paraplegia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary Spastic Paraplegias (HSP) are characterized by progressive spasticity and weakness of the lower limbs. At least 45 loci have been identified in families with autosomal dominant (AD), autosomal recessive (AR), or X-linked hereditary patterns. Mutations in the <it>SPAST </it>(<it>SPG4</it>) and <it>ATL1 </it>(<it>SPG3A</it>) genes would account for about 50% of the ADHSP cases.</p> <p>Methods</p> <p>We defined the <it>SPAST </it>and <it>ATL1 </it>mutational spectrum in a total of 370 unrelated HSP index cases from Spain (83% with a pure phenotype).</p> <p>Results</p> <p>We found 50 <it>SPAST </it>mutations (including two large deletions) in 54 patients and 7 <it>ATL1 </it>mutations in 11 patients. A total of 33 of the <it>SPAST </it>and 3 of the <it>ATL1 </it>were new mutations. A total of 141 (31%) were familial cases, and we found a higher frequency of mutation carriers among these compared to apparently sporadic cases (38% vs. 5%). Five of the <it>SPAST </it>mutations were predicted to affect the pre-mRNA splicing, and in 4 of them we demonstrated this effect at the cDNA level. In addition to large deletions, splicing, frameshifting, and missense mutations, we also found a nucleotide change in the stop codon that would result in a larger ORF.</p> <p>Conclusions</p> <p>In a large cohort of Spanish patients with spastic paraplegia, <it>SPAST </it>and <it>ATL1 </it>mutations were found in 15% of the cases. These mutations were more frequent in familial cases (compared to sporadic), and were associated with heterogeneous clinical manifestations.</p

    Temporal changes in the epidemiology, management, and outcome from acute respiratory distress syndrome in European intensive care units: a comparison of two large cohorts

    Get PDF
    Background: Mortality rates for patients with ARDS remain high. We assessed temporal changes in the epidemiology and management of ARDS patients requiring invasive mechanical ventilation in European ICUs. We also investigated the association between ventilatory settings and outcome in these patients. Methods: This was a post hoc analysis of two cohorts of adult ICU patients admitted between May 1ā€“15, 2002 (SOAP study, n = 3147), and May 8ā€“18, 2012 (ICON audit, n = 4601 admitted to ICUs in the same 24 countries as the SOAP study). ARDS was defined retrospectively using the Berlin definitions. Values of tidal volume, PEEP, plateau pressure, and FiO2 corresponding to the most abnormal value of arterial PO2 were recorded prospectively every 24&nbsp;h. In both studies, patients were followed for outcome until death, hospital discharge or for 60&nbsp;days. Results: The frequency of ARDS requiring mechanical ventilation during the ICU stay was similar in SOAP and ICON (327[10.4%] vs. 494[10.7%], p = 0.793). The diagnosis of ARDS was established at a median of 3 (IQ: 1ā€“7) days after admission in SOAP and 2 (1ā€“6) days in ICON. Within 24&nbsp;h of diagnosis, ARDS was mild in 244 (29.7%), moderate in 388 (47.3%), and severe in 189 (23.0%) patients. In patients with ARDS, tidal volumes were lower in the later (ICON) than in the earlier (SOAP) cohort. Plateau and driving pressures were also lower in ICON than in SOAP. ICU (134[41.1%] vs 179[36.9%]) and hospital (151[46.2%] vs 212[44.4%]) mortality rates in patients with ARDS were similar in SOAP and ICON. High plateau pressure (&gt; 29 cmH2O) and driving pressure (&gt; 14 cmH2O) on the first day of mechanical ventilation but not tidal volume (&gt; 8&nbsp;ml/kg predicted body weight [PBW]) were independently associated with a higher risk of in-hospital death. Conclusion: The frequency of and outcome from ARDS remained relatively stable between 2002 and 2012. Plateau pressure &gt; 29 cmH2O and driving pressure &gt; 14 cmH2O on the first day of mechanical ventilation but not tidal volume &gt; 8&nbsp;ml/kg PBW were independently associated with a higher risk of death. These data highlight the continued burden of ARDS and provide hypothesis-generating data for the design of future studies

    The Rotterdam Study: 2012 objectives and design update

    Get PDF
    The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, oncological, and respiratory diseases. As of 2008, 14,926 subjects aged 45Ā years or over comprise the Rotterdam Study cohort. The findings of the Rotterdam Study have been presented in over a 1,000 research articles and reports (see www.erasmus-epidemiology.nl/rotterdamstudy). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods
    • ā€¦
    corecore