656 research outputs found
On the Trace Anomaly and the Anomaly Puzzle in N=1 Pure Yang-Mills
The trace anomaly of the energy-momentum tensor is usually quoted in the form
which is proportional to the beta function of the theory. However, there are in
general many definitions of gauge couplings depending on renormalization
schemes, and hence many beta functions. In particular, N=1 supersymmetric pure
Yang-Mills has the holomorphic gauge coupling whose beta function is one-loop
exact, and the canonical gauge coupling whose beta function is given by the
Novikov-Shifman-Vainshtein-Zakharov beta function. In this paper, we study
which beta function should appear in the trace anomaly in N=1 pure Yang-Mills.
We calculate the trace anomaly by employing the N=4 regularization of N=1 pure
Yang-Mills. It is shown that the trace anomaly is given by one-loop exact form
if the composite operator appearing in the trace anomaly is renormalized in a
preferred way. This result gives the simplest resolution to the anomaly puzzle
in N=1 pure Yang-Mills. The most important point is to examine in which scheme
the quantum action principle is valid, which is crucial in the derivation of
the trace anomaly.Comment: 25 pages, 1 figure; v2:slight correction in sec.5, minor addition in
appendi
One Dimensional Dynamical Models of the Carina Nebula Bubble
We have tested the two main theoretical models of bubbles around massive star
clusters, Castor et al. and Chevalier & Clegg, against observations of the well
studied Carina Nebula. The Castor et al. theory over-predicts the X-ray
luminosity in the Carina bubble by a factor of 60 and expands too rapidly, by a
factor of 4; if the correct radius and age are used, the predicted X-ray
luminosity is even larger. In contrast, the Chevalier & Clegg model
under-predicts the X-ray luminosity by a factor of 10. We modify the Castor et
al. theory to take into account lower stellar wind mass loss rates, radiation
pressure, gravity, and escape of or energy loss from the hot shocked gas. We
argue that energy is advected rather than radiated from the bubble. We
undertake a parameter study for reduced stellar mass loss rates and for various
leakage rates and are able to find viable models. The X-ray surface brightness
in Carina is highest close to the bubble wall, which is consistent with
conductive evaporation from cold clouds. The picture that emerges is one in
which the hot gas pressure is far below that found by dividing the
time-integrated wind luminosity by the bubble volume; rather, the pressure in
the hot gas is set by pressure equilibrium with the photoionized gas at T=10^4
K. It follows that the shocked stellar winds are not dynamically important in
forming the bubbles.Comment: Accepted to APJ. 47 pages, 13 figure
The IC2118 association: new T Tauri stars in high-latitude molecular clouds
We identified new pre-main sequence stars in the region of high-latitude
molecular clouds associated with the reflection nebula IC2118, around l = 208
degr and b = -27 degr. The stars were selected as T Tauri candidates in
objective prism plates obtained with the Schmidt telescope of Konkoly
Observatory. Results of spectroscopic follow-up observations, carried out with
the FLAIR spectrograph installed on the UK Schmidt and with ALFOSC on Nordic
Optical Telescope, are presented in this paper. Based on spectral types,
presence of emission lines and lithium absorption line, we identified five
classical T Tauri stars and a candidate weak-line T Tauri star projected on the
molecular clouds, as well as two candidate pre-main sequence stars outside the
nebulous region. Using the near infrared magnitudes obtained from the 2MASS All
Sky Catalog. we determined the masses and ages of these stars. We found that
the five classical T Tauri stars projected on the clouds are physically related
to them, whereas the other stars are probably background objects. Adopting a
distance of 210 pc for IC2118 (Kun et al. 2001) and using Palla & Stahler's
(1999) evolutionary tracks we derived an average age of 2.5 million yrs and a
mass interval of 0.4--1.0 M_sun for the members of the IC2118 association.Comment: 11 pages, 6 figures, accepted for publication by Astronomy and
Astrophysic
High-Mass Cloud Cores in the eta Carinae Giant Molecular Cloud
We carried out an unbiased survey for massive dense cores in the giant
molecular cloud associated with eta Carinae with the NANTEN telescope in 12CO,
13CO, and C18O 1-0 emission lines. We identified 15 C18O cores. Two of the 15
cores are associated with IRAS point sources whose luminosities are larger than
10^4 Lo, which indicates that massive star formation is occuring within these
cores. Five cores including the two with IRAS sources are associated with MSX
point sources. We detected H13CO+ (1-0) emission toward 4 C18O cores, one of
which is associated with neither IRAS nor MSX point sources. This core shows
the presence of a bipolar molecular outflow in 12CO (2-1), which indicates that
star formation is also occuring in the core. In total, six C18O cores out of 15
are experienced star formation, and at least 2 of 15 are massive-star forming
cores in the eta Car GMC. We found that massive star formation occurs
preferentially in cores with larger column density, mass, number density, and
smaller ratio of virial mass to LTE mass Mvir/M. We also found that the cores
in the eta Car GMC are characterized by large line width and Mvir/M on average
compared to the cores in other GMCs. We investigated the origin of a large
amount of turbulence in the eta Car GMC. We propose the possibility that the
large turbulence was pre-existing when the GMC was formed, and is now
dissipating. Mechanisms such as multiple supernova explosions in the Carina
flare supershell may have contributed to form a GMC with a large amount of
turbulence.Comment: 41 pages, including 11 fugures and 9 tables. Accepted by ApJ. Author
changed. Paper with high resolution figures is available at
http://astrol.cias.osakafu-u.ac.jp/~yonekura/work/paper/etaCar
Clarifying Some Remaining Questions in the Anomaly Puzzle
We discuss several points that may help to clarify some questions that remain
about the anomaly puzzle in supersymmetric theories. In particular, we consider
a general N=1 supersymmetric Yang-Mills theory. The anomaly puzzle concerns the
question of whether there is a consistent way to put the R-current and the
stress tensor in a single supercurrent, even though in the classical theory
they are in the same supermultiplet. As is well known, the classically
conserved supercurrent bifurcates into two supercurrents having different
anomalies in the quantum regime. The most interesting result we obtain is an
explicit expression for the lowest component of one of the two supercurrents in
4-dimensional spacetime, namely the supercurrent that has the energy-momentum
tensor as one of its components. This expression for the lowest component is an
energy-dependent linear combination of two chiral currents, which itself does
not correspond to a classically conserved chiral current. The lowest component
of the other supercurrent, namely, the R-current, satisfies the Adler-Bardeen
theorem. The lowest component of the first supercurrent has an anomaly that we
show is consistent with the anomaly of the trace of the energy-momentum tensor.
Therefore, we conclude that there is no consistent way to put the R-current and
the stress tensor in a single supercurrent in the quantized theory. We also
discuss and try to clarify some technical points in the derivations of the
two-supercurrents in the literature. These latter points concern the
significance of infrared contributions to the NSVZ beta-function and the role
of the equations of motion in deriving the two supercurrents.Comment: 22 pages, no figure. v2: minor changes. v3: sections re-organized.
new subsections (IVA, IVB) added. references adde
Notes on Operator Equations of Supercurrent Multiplets and the Anomaly Puzzle in Supersymmetric Field Theories
Recently, Komargodski and Seiberg have proposed a new type of supercurrent
multiplet which contains the energy-momentum tensor and the supersymmetry
current consistently. In this paper we study quantum properties of the
supercurrent in renormalizable field theories. We point out that the new
supercurrent gives a quite simple resolution to the classic problem, called the
anomaly puzzle, that the Adler-Bardeen theorem applied to an R-symmetry current
is inconsistent with all order corrections to functions. We propose an
operator equation for the supercurrent in all orders of perturbation theory,
and then perform several consistency checks of the equation. The operator
equation we propose is consisitent with the one proposed by Shifman and
Vainshtein, if we take some care in interpreting the meaning of non-conserved
currents.Comment: 28 pages; v2:clarifications and references added, some minor change
Far infrared mapping of three Galactic star forming regions : W3(OH), S 209 & S 187
Three Galactic star forming regions associated with W3(OH), S209 and S187
have been simultaneously mapped in two trans-IRAS far infrared (FIR) bands
centered at ~ 140 and 200 micron using the TIFR 100 cm balloon borne FIR
telescope. These maps show extended FIR emission with structures. The HIRES
processed IRAS maps of these regions at 12, 25, 60 & 100 micron have also been
presented for comparison. Point-like sources have been extracted from the
longest waveband TIFR maps and searched for associations in the other five
bands. The diffuse emission from these regions have been quantified, which
turns out to be a significant fraction of the total emission. The spatial
distribution of cold dust (T < 30 K) for two of these sources (W3(OH) & S209),
has been determined reliably from the maps in TIFR bands. The dust temperature
and optical depth maps show complex morphology. In general the dust around S209
has been found to be warmer than that in W3(OH) region.Comment: Accepted for publication in Journal of Astrophysics and Astronomy (20
pages including 8 figures & 3 tables
Recommended from our members
The cryo-EM structure of the bacterial flagellum cap complex suggests a molecular mechanism for filament elongation
The bacterial flagellum is a remarkable molecular motor, whose primary function in bacteria is to facilitate motility through the rotation of a filament protruding from the bacterial cell. A cap complex, consisting of an oligomer of the protein FliD, is localized at the tip of the flagellum, and is essential for filament assembly, as well as adherence to surfaces in some bacteria. However, the structure of the intact cap complex, and the molecular basis for its interaction with the filament, remains elusive. Here we report the cryo-EM structure of the Campylobacter jejuni cap complex, which reveals that FliD is pentameric, with the N-terminal region of the protomer forming an extensive set of contacts across several subunits, that contribute to FliD oligomerization. We also demonstrate that the native C. jejuni flagellum filament is 11-stranded, contrary to a previously published cryo-EM structure, and propose a molecular model for the filament-cap interaction
Aspects of Non-minimal Gauge Mediation
A large class of non-minimal gauge mediation models, such as (semi-)direct
gauge mediation, predict a hierarchy between the masses of the supersymmetric
standard model gauginos and those of scalar particles. We perform a
comprehensive study of these non-minimal gauge mediation models, including mass
calculations in semi-direct gauge mediation, to illustrate these features, and
discuss the phenomenology of the models. We point out that the cosmological
gravitino problem places stringent constraints on mass splittings, when the
Bino is the NLSP. However, the GUT relation of the gaugino masses is broken
unlike the case of minimal gauge mediation, and an NLSP other than the Bino
(especially the gluino NLSP) becomes possible, relaxing the cosmological
constraints. We also discuss the collider signals of the models.Comment: 56 pages, 8 figures; v2:minor corrections, references added; v3:minor
correction
- …