43 research outputs found
Wind turbine wake characterization in complex terrain via integrated Doppler lidar data from the Perdigão experiment
During the intensive period (May-June 2017) of the Perdigäo experiment, three sets of Doppler lidar were operated to scan the wake of the wind turbine (WT) on the southwest ridge. CU operated a Doppler scanning lidar in the valley bottom approximately 1 km northeast of the WT and conducted multiple arc scans and two RHI scans every 10-minutes centred on the WT. DTU used a dual Doppler lidar system scanning almost horizontally from the northeast ridge. Two of the three DLR lidars were in-plane with the WT for the main wind direction, one in the valley and one on the distant mountain ridge. The third DLR lidar was on the southwest ridge. All three systems (CU, DTU and DLR) were operated such that in data processing vertical and/or horizontal profiles of the wake can be derived at different distances from the WT. The paper describes the strategies used to scan the wake by the three groups and compares wake characteristics derived from the different systems
Multi-point in situ measurements of turbulent flow in a wind turbine wake and inflow with a fleet of uncrewed aerial systems
The demand on wind energy for power generation will increase significantly in the next decade due to the transformation towards renewable energy production. In order to optimize the power generation of a wind farm, it is crucial to understand the flow in the wind turbine wake. The flow in the near wake close to downstream of the wind turbine (WT) is complex and highly three-dimensional. In the present study, for the first time, the SWUF-3D (Simultaneous Wind measurement with Unmanned Flight Systems in 3D) fleet of multirotor UASs (uncrewed aerial systems) is deployed for field measurements on an operating 2 MW WT in complex terrain. The UAS fleet has the potential to fill the meteorological gap of observations in the near wake with high-temporal- and high-spatial-resolution wind vector measurements plus temperature, humidity and pressure. During the experiment, the flow up- and downstream of the WT is measured simultaneously. Various flight patterns are used to investigate the near wake of the WT. The velocity deficit and the turbulence profile at different downstream distances are measured by distributed UASs which are aligned perpendicular to the flow in the near wake. The results show the expected double-Gaussian shape in the near wake under nearly stable atmospheric conditions. However, measurements in unstable atmospheric conditions with high turbulence intensity levels lead to single-Gaussian-like profiles at equal downstream distances (<1 D). Additionally, horizontal momentum fluxes and turbulence spectra are analyzed. The turbulence spectra of the wind measurement at the edge of the wake could reveal that tip vortices can be observed with the UASs.</p
Long-term simulation of the boundary layer flow over the double-ridge site during the Perdigão 2017 field campaign
The Perdigão campaign 2017 was an international field
campaign to measure the flow and its diurnal variation in the atmospheric
boundary layer over complex terrain. A huge data set of meteorological
observations was collected over the double-hill site by means of
state-of-the-art meteorological measurement techniques. A focus of the
campaign was the interaction of the boundary layer flow with a single wind
turbine, which was located on the south-western (SW) ridge top. In this
study, a long-term nested large-eddy simulation (LES) of 49-day duration with a
maximum horizontal resolution of 200 m is used to describe both the general
meteorological situation over Spain and Portugal and the local small-scale
flow structures over the double hill during the intensive observation period
(IOP). The simulations show that frequently observed nocturnal low-level jets
(LLJs) from the NE have their origin over the slopes of the elevated plateau
between the Portuguese Serra da Estrela and the Spanish Sierra de Gata
mountain ranges N and NE of Perdigão and that the diurnal clockwise
turning of the wind direction over the double ridge is induced by slope and
valley winds under weak synoptic conditions. It is found that, in spite of the
long simulation time, modelled and observed wind structures on the ridge tops
agree well, while along-valley flow within the valley is underestimated by
the model.</p
ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer
This paper presents the unmanned research aircraft Carolo P360 "ALADINA"
(Application of Light-weight Aircraft for
Detecting IN situ Aerosol) for investigating the
horizontal and vertical distribution of ultrafine particles in the
atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum
take-off weight of 25 kg and is equipped with aerosol instrumentation and
meteorological sensors. A first application of the system, together with the
unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the
Eberhard Karls University of Tübingen (EKUT), is described. As small
payload for ALADINA, two condensation particle counters (CPC) and one optical
particle counter (OPC) were miniaturised by re-arranging the vital parts and
composing them in a space-saving way in the front compartment of the
airframe. The CPCs are improved concerning the lower detection threshold and
the response time to less than 1.3 s. Each system was characterised in the
laboratory and calibrated with test aerosols. The CPCs are operated in this
study with two different lower detection threshold diameters of 11 and 18 nm.
The amount of ultrafine particles, which is an indicator for new particle
formation, is derived from the difference in number concentrations of the two
CPCs (ΔN). Turbulence and thermodynamic structure of the
boundary layer are described by measurements of fast meteorological sensors
that are mounted at the aircraft nose. A first demonstration of ALADINA and a
feasibility study were conducted in Melpitz near Leipzig, Germany, at the
Global Atmosphere Watch (GAW) station of the Leibniz Institute for
Tropospheric Research (TROPOS) on 2 days in October 2013. There, various
ground-based instruments are installed for long-term atmospheric monitoring.
The ground-based infrastructure provides valuable additional background
information to embed the flights in the continuous atmospheric context and is
used for validation of the airborne results. The development of the boundary
layer, derived from backscatter signals of a portable Raman lidar
POLLYXT, allows a quick overview of the current vertical structure
of atmospheric particles. Ground-based aerosol number concentrations are
consistent with the results from flights in heights of a few metres. In
addition, a direct comparison of ALADINA aerosol data and ground-based
aerosol data, sampling the air at the same location for more than 1 h, shows
comparable values within the range of ± 20 %. MASC was operated
simultaneously with complementary flight patterns. It is equipped with the
same meteorological instruments that offer the possibility to determine
turbulent fluxes. Therefore, additional information about meteorological
conditions was collected in the lowest part of the atmosphere. Vertical
profiles up to 1000 m in altitude indicate a high variability with distinct
layers of aerosol, especially for the small particles of a few nanometres in
diameter on 1 particular day. The stratification was almost neutral and two
significant aerosol layers were detected with total aerosol number
concentrations up to 17 000 ± 3400 cm−3 between 180 and 220 m
altitude and 14 000 ± 2800 cm−3 between 550 and 650 m. Apart
from those layers, the aerosol distribution was well mixed and reached the
total number concentration of less than 8000 ± 1600 cm−3. During
another day, the distribution of the small particles in the lowermost ABL was
related to the stratification, with continuously decreasing number
concentrations from 16 000 ± 3200 cm−3 to a minimum of
4000 ± 800 cm−3 at the top of the inversion at 320 m. Above this,
the total number concentration was rather constant. In the region of 500 to
600 m altitude, a significant difference of both CPCs was observed. This
event occurred during the boundary layer development in the morning and
represents a particle burst within the ABL
Estimating Upper Silesian coal mine methane emissions from airborne in situ observations and dispersion modeling
Abundant mining and industrial activities located in the Upper Silesian Coal Basin (USCB) lead to large emissions of the potent greenhouse gas (GHG) methane (CH4). The strong localization of CH4 emitters (mostly confined to known coal mine ventilation shafts) and the large emissions of 448 and 720 kt CH4 yr−1 reported in the European Pollutant Release and Transfer Register (E-PRTR 2017) and the Emissions Database for Global Atmospheric Research (EDGAR v4.3.2), respectively, make the USCB a prime research target for validating and improving CH4 flux estimation techniques. High-precision observations of this GHG were made downwind of local (e.g., single facilities) to regional-scale (e.g., agglomerations) sources in the context of the CoMet 1.0 campaign in early summer 2018. A quantum cascade–interband cascade laser (QCL–ICL)-based spectrometer adapted for airborne research was deployed aboard the German Aerospace Center (DLR) Cessna 208B to sample the planetary boundary layer (PBL) in situ. Regional CH4 emission estimates for the USCB are derived using a model approach including assimilated wind soundings from three ground-based Doppler lidars.
Although retrieving estimates for individual emitters is difficult using only single flights due to sparse data availability, the combination of two flights allows for exploiting different meteorological conditions (analogous to a sparse tomography algorithm) to establish confidence on facility-level estimates. Emission rates from individual sources not only are needed for unambiguous comparisons between bottom-up and top-down inventories but also become indispensable if (independently verifiable) sanctions are to be imposed on individual companies emitting GHGs. An uncertainty analysis is presented for both the regional-scale and facility-level emission estimates.
We find instantaneous coal mine emission estimates of 451/423 ± 77/79 kt CH4 yr−1 for the morning/afternoon flight of 6 June 2018. The derived fuel-exploitation emission rates coincide (±6 %) with annual-average inventorial data from E-PRTR 2017 although they are distinctly lower (−28 %/−32 %) than values reported in EDGAR v4.3.2. Discrepancies in available emission inventories could potentially be narrowed down with sufficient observations using the method described herein to bridge the gap between instantaneous emission estimates and yearly averaged inventories.</p
Observational constraints on methane emissions from Polish coal mines using a ground-based remote sensing network
Given its abundant coal mining activities, the Upper Silesian Coal Basin (USCB) in southern Poland is one of the largest sources of anthropogenic methane (CH) emissions in Europe. Here, we report on CHemission estimates for coal mine ventilation facilities in the USCB. Our estimates are driven by pairwise upwind–downwind observations of the column-average dry-air mole fractions of CH (XCH) by a network of four portable, ground-based, sun-viewing Fourier transform spectrometers of the type EM27/SUN operated during the CoMet campaign in May–June 2018. The EM27/SUN instruments were deployed in the four cardinal directions around the USCB approximately 50 km from the center of the basin. We report on six case studies for which we inferred emissions by evaluating the mismatch between the observed downwind enhancements and simulations based on trajectory calculations releasing particles out of the ventilation shafts using the Lagrangian particle dispersion model FLEXPART. The latter was driven by wind fields calculated by WRF (Weather Research and Forecasting model) under assimilation of vertical wind profile measurements of three co-deployed wind lidars. For emission estimation, we use a Phillips–Tikhonov regularization scheme with the L-curve criterion. Diagnosed by the emissions averaging kernels, we find that, depending on the catchment area of the downwind measurements, our ad hoc network can resolve individual facilities or groups of ventilation facilities but that inspecting the emissions averaging kernels is essential to detect correlated estimates. Generally, our instantaneous emission estimates range between 80 and 133 kt CH a for the southeastern part of the USCB and between 414 and 790 kt CHa for various larger parts of the basin, suggesting higher emissions than expected from the annual emissions reported by the E-PRTR (European Pollutant Release and Transfer Register). Uncertainties range between 23 % and 36 %, dominated by the error contribution from uncertain wind fields
Development of nuclear emulsions operating in vacuum for the AEgIS experiment
For the first time the AEgIS (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) experiment will measure the Earth\u2019s local gravitational acceleration g on antimatter through the evaluation of the vertical displacement of an antihydrogen horizontal beam. This will be a model independent test of the Weak Equivalence Principle at the base of the general relativity. The initial goal of a g measurement with a relative uncertainty of 1% will be achieved with less than 1000 detected antihydrogens, provided that their vertical position could be determined with a precision of a few micrometers. An emulsion based detector is very suitable for this purpose featuring an intrinsic sub-micrometric spatial resolution. Nevertheless, the AEgIS experiment re- quires unprecedented operational conditions for this type of detector, namely vacuum environment and very low temperature. An intense R&D activity is presently going on to optimize the detector for the AEgIS experimental requirements with rather encouraging results
Two fast temperature sensors for probing of the atmospheric boundary layer using small remotely piloted aircraft (RPA)
Two types of temperature sensors are designed and tested: a thermocouple and a fine wire resistance thermometer. The intention of this study is to figure out which kind of measurement principle is in general more suited for atmospheric boundary layer meteorology with small remotely piloted aircraft (RPA). The sensors are calibrated in a NIST traceable climate chamber and validated in flight against tower measurements, radiosondes and remote sensing. The sensors have a measurement range of at least −10–50 °C, an absolute RMS error of less than ±0.2 K which is stable over the lifetime of the sensors, and a resolution of about 0.01 K. Both devices are tested for typical errors like radiation error and adiabatic heating, as well as for their dynamic response. Spectral resolutions of up to approximately 10 Hz can be obtained with both sensors, which makes them suitable for turbulence measurement. Their low cost of less than 100 EUR in pure hardware is a major advantage for research with small RPA
Towards higher accuracy and better frequency response with standard multi-hole probes in turbulence measurement with remotely piloted aircraft (RPA)
This study deals with the problem of turbulence measurement with small remotely piloted aircraft (RPA). It shows how multi-hole probes (MHPs) can be used to measure fluctuating parts of the airflow in flight up to 20 Hz. Accurate measurement of the transient wind in the outdoor environment is needed for the estimation of the 3-D wind vector as well as turbulent fluxes of heat, momentum, water vapour, etc. In comparison to an established MHP system, experiments were done to show how developments of the system setup can improve data quality. The study includes a re-evaluation of the pneumatic tubing setup, the conversion from pressures to airspeed, the pressure transducers, and the data acquisition system. In each of these fields, the steps that were taken lead to significant improvements. A spectral analysis of airspeed data obtained in flight tests shows the capability of the system to measure atmospheric turbulence up to the desired frequency range