1,458 research outputs found

    Nonequilibrium Fock space for the electron transport problem

    Full text link
    Based on the formalism of thermo field dynamics we propose a concept of nonequilibrium Fock space and nonequilibrium quasiparticles for quantum many-body system in nonequilibrium steady state. We develop a general theory as well as demonstrate the utility of the approach on the example of electron transport through the interacting region. The proposed approach is compatible with advanced methods of electronic structure calculations such as coupled cluster theory and configuration interaction

    Noncommutative Thermofield Dynamics

    Full text link
    The real-time operator formalism for thermal quantum field theories, thermofield dynamics, is formulated in terms of a path-integral approach in non-commutative spaces. As an application, the two-point function for a thermal non-commutative λϕ4\lambda \phi^4 theory is derived at the one-loop level. The effect of temperature and the non-commutative parameter, competing with one another, is analyzed.Comment: 13 pages; to be published in IJMP-A

    Pion-Nucleon Scattering in Kadyshevsky Formalism: I Meson Exchange Sector

    Get PDF
    In a series of two papers we present the theoretical results of πN\pi N/meson-baryon scattering in the Kadyshevsky formalism. In this paper the results are given for meson exchange diagrams. On the formal side we show, by means of an example, how general couplings, i.e. couplings containing multiple derivatives and/or higher spin fields, should be treated. We do this by introducing and applying the Takahashi-Umezawa and the Gross-Jackiw method. For practical purposes we introduce the Pˉ\bar{P} method. We also show how the Takashashi-Umezawa method can be derived using the theory of Bogoliubov and collaborators and the Gross-Jackiw method is also used to study the nn-dependence of the Kadyshevsky integral equation. Last but not least we present the second quantization procedure of the quasi particle in Kadyshevsky formalism.Comment: 29 page

    Spectra of Quarkonia at Finite Temperature

    Full text link
    Finite-temperature spectra of heavy quarkonia are calculated by combining potential model and thermofield dynamics formalisms. The mass spectra of the heavy quarkonia with various quark contents are calculated. It is found that binding mass of the quarkonium decreases as temperature increases.Comment: 12 pages, 1 figure. To appear Mod.Phys.Lett.

    Influence of modal loss on the quantum state generation via cross-Kerr nonlinearity

    Full text link
    In this work we investigate an influence of decoherence effects on quantum states generated as a result of the cross-Kerr nonlinear interaction between two modes. For Markovian losses (both photon loss and dephasing), a region of parameters when losses still do not lead to destruction of non-classicality is identified. We emphasize the difference in impact of losses in the process of state generation as opposed to those occurring in propagation channel. We show moreover, that correlated losses in modern realizations of schemes of large cross-Kerr nonlinearity might lead to enhancement of non-classicality.Comment: To appear in PR

    Three-body problem at finite temperature and density

    Get PDF
    We derive practical three-body equations for the equal-time three-body Green function in matter. Our equations describe both bosons and fermions at finite density and temperature, and take into account all possible two-body sub-processes allowed by the underlying Hamiltonian.Comment: 24 pages, revtex

    Thermal Bogoliubov transformation in nuclear structure theory

    Full text link
    Thermal Bogoliubov transformation is an essential ingredient of the thermo field dynamics -- the real time formalism in quantum field and many-body theories at finite temperatures developed by H. Umezawa and coworkers. The approach to study properties of hot nuclei which is based on the extension of the well-known Quasiparticle-Phonon Model to finite temperatures employing the TFD formalism is presented. A distinctive feature of the QPM-TFD combination is a possibility to go beyond the standard approximations like the thermal Hartree-Fock or the thermal RPA ones.Comment: 8 pages, Proceedings of the International Bogolyubov Conference "Problems of Theoretical and Mathematical Physics", August 23 -- 27, 2009, Dubna, Russi

    Lepton charge and neutrino mixing in pion decay processes

    Full text link
    We consider neutrino mixing and oscillations in quantum field theory and compute the neutrino lepton charge in decay processes where neutrinos are generated. We also discuss the proper definition of flavor charge and states and clarify the issues of the possibility of different mass parameters in field mixing.Comment: 13 page

    QED symmetries in real-time thermal field theory

    Get PDF
    We study the discrete and gauge symmetries of Quantum Electrodynamics at finite temperature within the real-time formalism. The gauge invariance of the complete generating functional leads to the finite temperature Ward identities. These Ward identities relate the eight vertex functions to the elements of the self-energy matrix. Combining the relations obtained from the Z2Z_2 and the gauge symmetries of the theory we find that only one out of eight longitudinal vertex functions is independent. As a consequence of the Ward identities it is shown that some elements of the vertex function are singular when the photon momentum goes to zero.Comment: New version as it will appear in Phys RevD 19 pages, RevTex, 1figur
    • …
    corecore