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Pion-Nucleon Scattering in Kadyshevsky Formalism: I Meson 
Exchange Sector

J.W .W agenaar and T.A.Rijken 

May 11, 2009

A bstract

In a series of two papers we present the theoretical results of nN/meson-baryon scattering in 
the Kadyshevsky formalism. In this paper the results are given for meson exchange diagrams. 
On the formal side we show, by means of an example, how general couplings, i.e. couplings 
containing multiple derivatives and/or higher spin fields, should be treated. We do this by 
introducing and applying the Takahashi-Umezawa and the Gross-Jackiw method. For practical 
purposes we introduce the P  method. We also show how the Takashashi-Umezawa method can 
be derived using the theory of Bogoliubov and collaborators and the Gross-Jackiw method is 
also used to study the n-dependence of the Kadyshevsky integral equation. Last but not least 
we present the second quantization procedure of the quasi particle in Kadyshevsky formalism.

1 Introduction
Over the years the Nijmegen group has constructed very successful baryon-baryon models (NN 
and YN). As for instance in [1] and [2] soft-core One-Boson-Exchange NN and YN models are 
constructed based on Regge-pole theory. The models are linked via SUf (3) symmetry in order 
to have more control on the parameters.

Based on the same ideas, the Nijmegen group recently broadened its horizon by also including 
meson-baryon models [3]. Here, a simultaneous n N  and K  + N  model is constructed using one- 
meson and one-baryon exchange potentials.

This work is presented in two articles, referred to as paper I (this paper) and paper II [4], and 
can be regarded as an extension of [3], since we also consider meson-baryon scattering or pion- 
nucleon, more specifically. The reason for considering pion-nucleon scattering is, besides the 
interest in its own, that there is a large amount of experimental data. Using the aforementioned 
SUf (3) symmetry the extension to other meson-baryon systems is easily made. Last but not 
least we would like to mention the connection to photo/electro-production models.

Compared to [3] our focus is more on the theoretical background. For instance we formally 
include what is called ”pair suppression”, whereas this was assumed in [3]. Pair suppression 
comes down to the suppression of negative energy contributions. For the first time, at least 
to our knowledge, we incorporate pair suppression in a covariant and frame independent way.
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This may also be interesting for relativistic many body theories. The details of the formal 
incorporation of pair suppression are discussed in paper II.

In order to have this covariant and frame independent pair suppression, we use the Kady- 
shevsky formalism [5, 6, 7, 8]. This formalism is equivalent to Feynman formalism, since it 
can be derived from the same S-matrix formula. It covariantly, though frame dependently 1, 
separates positive and negative energy contributions. Generally, the number of diagrams in
creases: 1 ^  n! at order n as in old-fashioned perturbation theory. Contrary to the Feynman 
formalism all particles in the Kadyshevsky formalism remain on their mass shell, at the cost 
of the introduction of an extra quasi particle, which carries four momentum only. A second 
quantization formalism of this quasi field is presented in appendix B . An other advantage of 
the Kadyshevsky formalism is that it brings about a three dimensional Lippmann-Schwinger 
type of integral equation [8], whereas a three dimensional integral equation was achieved in [3] 
only after approximations of the Bethe-Salpeter equation [9]. We study the n-dependence of the 
Kadyshevsky integral equation with tree level amplitudes as input in section 2.1. As compared 
to the original Kadyshevsky rules we use a slightly different version, introduced and discussed 
in appendix A.

Couplings containing derivatives and higher spin fields may cause differences and problems 
as far as the results in the Kadyshevsky formalism and the Feynman formalism are concerned. 
This is discussed in section 4.2 by means of an example of simplified vector meson exchange. 
After a second glance the results in both formalisms are the same, however, they contain extra 
frame dependent contact terms. Two methods are introduced and applied, which discuss a 
second source of extra terms: the Takahashi-Umezawa (TU) [10, 11, 12] and the Gross-Jackiw 
(GJ) [13] method. The extra terms coming from this second source cancel the former ones 
exactly. Both formalisms, however, yield the same results. With the use of (one of) these 
methods the final results for the S-matrix or amplitude are covariant and frame independent (n- 
independent). In section 4.2.4 we introduce and discusse the P-method, which is quite useful for 
practical purposes. We derive the TU method from the BMP [14, 15, 16] theory in appendix C 
and in light of this TU method we make some remarks about the Haag theorem [17] in appendix 
D .

Although we already discussed some content, this paper is organized as follows: we start 
in section 2 with some meson-baryon scattering kinematics in Kadyshevsky formalism together 
with the discussion of the n-dependence of the integral equation. We start the application of 
the Kadyshevsky formalism to the n N  system by first discussing the ingredients of the model 
in section 3. The meson exchange amplitudes are calculated in section 4, which contains the 
results for equal initial and final states. For the results for general meson-baryon initial and final 
states we refer to appendix A of paper II. For the results for baryon exchange we refer to paper
II as well. As mentioned before section 4 also contains the discussion of how general couplings,
i.e. couplings containing multiple derivatives and/or higher spin fields, should be treated in the 
Kadyshevsky formalism.

1By frame dependent we mean: dependent on a vector
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2 M eson-Baryon Scattering K inem atics
We consider the pion-nucleon or more general the meson-baryon reactions

Mi(q) +  Bi(p, s) ^  M f  (q') +  B f  (p', s') . (1)

where M stands for a meson and B is a baryon. For the four momentum of the baryons and 
mesons we take, respectively

p% = (Ec, p c) , where Ec = \Jp2c + Mc2 ,

=  i£c, qc) , where £c = v /qT+™% ■ (2)

Here, c stands for either the initial state i or the final state f . In some cases we find it useful 
to use the definitions (2) for the intermediate meson-baryon states n.

Using the Kadyshevsky formalism (appendix A) and especially the second quantization pro
cedure (appendix B) external quasi particles may occur with initial and final state momenta 
nK and nK, respectively. Therefore, the usual overall four-momentum conservation is generally 
replaced by

p +  q +  k n  =  p' +  q' +  k' n . (3)

As (3) and (1) make clear a ”prime” notation is used to indicate final state momenta; no prime 
means initial state momenta. We will maintain this notation (also for the energies) throughout 
these articles, unless indicated otherwise.

Furthermore we find it useful to introduce the Mandelstam variables in the Kadyshevsky 
formalism

spq =  (p +  q)2 , sp'q' =  (p' +  q')2 ,
tp'p =  (p — p) ; tq/q =  (q — q) ,
Up,q =  (p' -  q)2 , upq ! =  (p -  q')2 , (4)

where spq and sp /q/ etc., are only identical for k ' =  k =  0. These Mandelstam variables satisfy 
the relation

^ \/^ j7 q ^ p q  tp 'p  tq fq +  Upq' u p ' q =  2 ( M j  TTl f  “1“ ) • (5)

The total and relative four-momenta of the initial, final, and intermediate channel (c =  i, f , n) 
are defined by

Pc =  Pc +  qc , kc =  Mc,2 Pc -  Mc, 1 qc , (6)

where the weights satisfy mc,i +  Mc,2 =  1. We choose the weights to be

-  Ec 
Mc>1 Ec + £ c  ’

Mc’2 =  £ c +  £c ' (7)
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Since in the Kadyshevsky formalism all particles are on their mass shell, the choice (7) means 
that always k0 =  0.

In the center-of-mass (CM) system p =  —q and p ' =  — q', therefore

Pi =  (W, 0) , Pf =  (W', 0) , 
ki =  (0, p) , kf  =  (0, p ') . (8)

where W =  E  +  E and W ' =  E' +  E'. Furthermore we take nM =  (1, 0).
Also we take as the scattering plane the xz-plane, where the 3-momentum of the initial 

baryon is oriented in the positive z-direction.
In the CM system the unpolarized differential cross section is defined to be

do_\ =  ]p]_ \  ’
C M  2 | P l

M fi
87Ta/s

(9)

where the amplitude M f  is defined in appendix A and the sum is over the spin components of 
the final baryon.

To generate amplitudes at all orders we use the Kadyshevsky integral equation in the CM 
system

M(W ' p '; W  p) =  M00r (W' p'; W  p ) ^  d3k„ M07(W ' p '; Wn k„)

x 7 ^ 3  T c V  ~t -----)= T ^  M« o ( ^ k » ; f f P) • (10)(27r) 4:Cnrjn V S — a/s^ +  IE

Although there are still K-labels in (10), they’re fixed at k =  Pj0 — P,0. Also we have included 
the spinors of the projection operator of the fermion propagator

S (+)(p„) =  A(1/2)(p„) ^(pn)^(pn -  M 2) ,

= 2-^ u(Pnsn)u(Pnsn) ^(P„)^(P„ -  M )  , (11)
Sn

in the amplitudes MoK(p'q';Pnqn) and MKo(Pnqn;pq).
We have put the intermediate negative energy states (A(-) (x -  y; ) and S (-) (x -  y; M 2)) 

in M ^r, but in principle they could also participate in the integral equation. However, using 
pair suppression in the way we do in paper II, these terms vanish.

2

2.1 n -independ en ce o f K adyshevsky  Integral E quation

When generating Kadyshevsky diagrams to random order using the Kadyshevsky integral equa
tion, the (full) amplitude is identical to the one obtained in Feynman formalism when the 
external quasi particle momenta are put to zero. It is therefore n-independent, i.e. frame 
independent.

Since an approximation is used to solve the Kadyshevsky integral equation, namely tree level 
diagrams as driving terms, it is not clear whether the full amplitude remains to be n-independent 
when the external quasi particle momenta are put to zero.
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In examining the n-dependence of the amplitude we write the Kadyshevsky integral equation 
schematically as

Moo =  M00r +  ƒ  dK M0Kr GK MKo , (12)

Since n2 =  1, only variations in a space-like direction are unrestricted, i.e. n • Jn =  0 [13]. We 
therefore introduce the projection operator

P -  n“n^ , (13)

from which it follows that naP =  0. The n-dependence of the amplitude can now be studied

d d Mirr
P a^ M 00 = P a p J P fdnp anp

+ P a/3 I' dK , w irr  W  5 M k0
Qn ii Mk0 +  M0« Gk (14)

If both Kadyshevsky contributions are considered at second order in Moo, then it is n-independent, 
since it yields the Feynman expression. As far as the second term in (14) is concerned we observe 
the following

^  «  « /(« )  > K " * * )  ’ (15)
where f  (k) and #(k) are functions that do not contain poles or zero’s at k =  0. Therefore, the 
integral in (14) is of the form

j  dK k h(«)G^ . (16)

When performing the integral we decompose the GK as follows

G'r oc ------— =  P -----îæô(h) . (17)
K +  i£ K

As far as the ¿(K)-part of (17) is concerned we immediately see that it gives zero when used 
in the integral (16). For the Principle valued integral, indicated in figure 1 by I, we close the 
integral by connecting the end point (k =  ± œ )  via a (huge) semi-circle in the upper half, 
complex K-plane (line II in figure 1) and by connecting the points around zero via a small semi 
circle also in the upper half plane (line III in figure 1). Since every single (tree level) amplitude 
is proportional to 1/(k+A +*e), where k is related to the momentum of the incoming or outgoing 
quasi particle and A  some positive or negative number, the poles will always be in the lower 
half plane and not within the contour. Therefore, the contour integral is zero.

Since we have added integrals (II and III in figure 1) we need to know what their contribu
tions are. The easiest part is integral III. Its contribution is half the residue at k =  0 and since 
the only remaining integrand part h(K) in (16) doesn’t contain a pole at zero it is zero.

If we want the contribution of integral II to be zero, than the integrand should at least be of 
order 0 (4 j ) .  Unfortunately this is not (always) the case as we will see in sections 4 and paper
II. To this end we introduce a phenomenological ”form factor”

(  A2 \ Nk 

F W = •  (18)
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Figure 1: Principle value integral

Channel Exchanged particle
t fo ,cr,P ,p
u N , N*, S'il, A 33
s N , N * , S u , A 33

Table 1: Exchanged particles in the various channels

where AK is large and N K is some positive integer. In (18) e is real, positive, though small and 
e(«) =  0(k) — 0( —k).

The effect of the function F(k) (18) on the original integrand in (16) is little, since for large 
Ak it is close to unity. However, including this function in the integrand makes sure that it is 
at least of order O(-ij) so that integral II gives zero contribution. The —ie(n)£ part ensures 
that there are now poles on or within the closed contour, since they are always in the lower half 
plane (indicated by the dots in figure 1).

3 A pplication: P ion-N ucleon  Scattering
In the following sections we’re going to apply the Kadyshevsky formalism to the pion-nucleon 
system, although we present it in such a way that it can easily be extended to other meson
baryon systems. The isospin factors are not included in our treatment; we are only concerned 
about the Lorentz and Dirac structure. For the details about the isospin factors we refer to [3].

The ingredients of the model are tree level, exchange amplitudes as mentioned before. These 
amplitudes serve as input for the integral equation. Very similar to what is done in [3] we con
sider for the amplitudes the exchanged particles as in table 1. Graphically, this shown in figure
2. Contrary to [3] we do not consider the exchange of the tensor mesons, since their contribution 
is little. The inclusion of the them can be regarded as an extension of this work.

For the description of the amplitudes we need the interaction Lagrangians, which in our treat
ment always serve as the starting points

6



u : N , N  *, A

Figure 2: Tree level amplitudes as input for integral equation. The inclusion o f  the quasi particle 
lines is schematically. Therefore, the diagrams represent either the  (a) or the  (b) diagram.

Triple meson vertices

L sp p

L ypp

gPPS 4P,a4P,b • 4s  ,

gVPP ( 4aidM4b ) 4M ,

(19a)

(19b)

where S, V, P  stand for scalar, vector and pseudo scalar to indicate the various mesons. 
The indices a, b are used to indicate the outgoing and incoming meson, respectively. For 
the derivative .
Meson-baryon vertices

L s n n  =

L v n n  =

Cpv  =

Lv  =

gs VV • 4 s ,

gv Vym V 4m -

f p v

f v  
2, M y

idM mvV) • 4v

■ V ’ 7 5 7 m V ’ •

—  4 7^4  • d^4>p ,mn

(20a)

(20b)

(20c)

(20d)

where <rMi, =   ̂ [7 ^ ,7 ]̂. The coupling constants f y  of (20b) and (20d) do not necessarily 
coincide.
We have chosen (20b) in such a way that the vector meson couples to a current, which 
may contain a derivative. This is a bit different from [3, 18], where the derivative acts on 
the vector meson. In Feynman theory this does not make a difference, however it does in 
Kadyshevsky formalism, because of the presence of the quasi particles.
Equation (20c) is used to describe the exchange (u, s-channel) of the nucleon and Roper 
(N *) and (20d) is used for the Sn  exchange. This, because of their intrinsic parities. Note, 
that we could also have chosen the pseudo scalar and scalar couplings for these exchanges. 
However, since the interactions (20c) and (20d) are also used in [3] and in chiral symmetry 
based models, we use these interactions.

7



• n N A 33 vertex

LnNA =  ggi { d ^ v) Y5Ya^  (dp^) +  Qgi V’757a (^M̂ v ) ( d p , (21)

The use of this interaction Lagrangian differs from the one used in [3]. We’ll come back 
to this in paper II.

The meson exchange processes are discussed in section 4 . As mentioned before the discussion of 
the baryon exchange processes (including pair suppression) is postponed to paper II. An other 
important ingredient of the model is the use of form factors. We also postpone the discussion 
of them to paper II.

4 M eson Exchange
Here, we proceed with the discussion of the meson exchange processes. We give the amplitudes 
for meson-baryon scattering or pion-nucleon scattering, specifically, meaning that we take equal 
initial and final states (Mf =  M* =  M and mf =  =  m, where M and m are the masses 
of the nucleon and pion, respectively). The results for general meson-baryon initial and final 
states are presented in appendix A of paper II.

4.1 Scalar M eson E xchange

For the description of the scalar meson exchange processes at tree level, graphically shown in 
figure 3, we use the interaction Lagrangians (19a) and (20a), which lead to the vertices

r p p s  =  gpss  ,
r s  =  g s , (22)

using L j  =  —"Hi ^  —r. For the appropriate propagator we use the first line of (63).

Figure 3: Scalar meson exchange

Applying the Kadyshevsky rules as discussed in appendix A, the amplitudes read

8



where Pa^ = ±A t +  \  (k ' +  k) —nn\  (here a, corresponds to the +  sign and b to the — sign) and 
A t = \  {p' — P — q' + q)- For the integration we consider the ¿-function in (23)

(а) : 5(Pl -  M j)  =  — (J(«i -  k̂ ~) +  J(«i -  )) ,
|K1 -  Ki 1

n f  =  A t ■ n + - ( k + k) ±  A t ,

(б) : (5(P62 -  M g )  =  — -------— (¿ (« i -  k^) +  S(k  1 -  n i )) ,
|Ki -  Ki 1

=  —A t • n +  — (k! +  k) ±  At , (24)

where A t = \J (n ■ A t ) 2 — A 2 +  M j. In both cases 6 (P® b) selects the solution. Therefore,

Pa =  At -  (At • n) n +  Atn ,
Pb =  -A t  +  (At • n) n +  Atn . (25)

With these expression we find for the amplitudes
1 1

= gpssgs [u{p's')u(Ps)\ —  ■
2 At At • n +  k — At +  *e

1 1
M?-* =  gpssgs \u(p's')u(ps)] —— • — --------------------------- , (26)y * l Vi7 ; ^  2 A t _ Ai . n  + R _ A t + ie ’ v ;

where R = ^ ( k ' +  k).
Adding the two together and putting k/ =  k =  0 we get

Moo =  gpssgs [u(p s')u(ps)\ -----  1 . , (27)
t — MS +  i£

which is Feynman result [3].
In subsection 2.1 we discussed the n-dependence of the Kadyshevsky integral equation. In 

order to do that we need to know the n-dependence of the amplitude (14)

M0a+b) =  M0K) +  M0K) , 

dM0(a+b) , / / /\ / M=  K gpssgs [u{p s )u{ps)\dvP
w n - A t ( A t )/3 ( n • A t ) 2 -  3 A2 - +  2«A t 
X 2/I3 /  / . 2 ' 2 ' 128J

^(n • A t)2 — (At — f  ) +

If we would only consider scalar meson exchange in the Kadyshevsky integral equation the in
tegrand would be of the form (16), where h(n) would by itself be of order O(-^r) as can be seen 
from (28). Therefore, the phenomenological ”form factor” (18) would not be needed.

Since there’s no propagator as far as Pomeron exchange is concerned, the Kadyshevsky ampli
tude is the same as the Feynman amplitude for Pomeron exchange [3]

= 9PP̂ I 9P [u{p's')u(p)\ . (29)
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4.2 V ector M eson  Exchange: E xam ple
Before we go on with real vector meson exchange, we consider simplified vector meson exchange. 
We use this as an example to illustrate seaming problems that might occur in the results in 
the Kadyshevsky formalism, especially when compared to those in the Feynman formalism. 
We stress that although we consider the example of simplified vector meson exchange, these 
peculiarities are generally present when interaction Lagrangians containing derivatives and/or 
higher spin fields (s > 1) are considered.

In order to study simplified vector meson exchange we take interaction Lagrangian (19b) 
and (20b), without the <rMV-term

Li  =  4b • 4>M • 4>M , (30)

4.2 .1  N a iv e  K ad y sh ev sk y  A p proach

The Kadyshevsky diagrams for the (simplified) vector meson exchange are shown in figure 4 . 
For the various components of the diagrams we take the following vertex functions

p

Figure 4: Vector meson exchange in Kadyshevsky formalism.

r ^  =  g 7M

r f f  =  g (q/ +  q)M , (31)

following from (30), and the third line of (63) for the propagator.
Applying the Kadyshevsky rules as given in appendix A straightforwardly we get the follow

ing amplitudes

A i j f  =  - S '  I  ^

X d(P0tb)S(P2a,b — M 2)(q/ +  q)v , (32)

1 0



The «i-integral is discussed in (24) and (25). We, therefore, give the results immediately

=  - g 2 u (p s ')

1
-  (sp>q> ~  Spq) + -  (

— 2(At • n — At)n • Q 

1

Upqf up' q) — (m2 — m2)

i(ps)

2A t  A t ' n  h (k/ +  K) — A t +  ie

M =  —g2 u (p s ')

-  (sp>q> -  spq) + -  (Upqf up 'q) — (m2 — m2)

— 2(At • n +  At)n  • Q

1 1

2v4¿ — At • n +  ^ i.K' K) ~ At -\- ie

((ps)

(33)

Adding the two together and putting k' =  k =  0 we should get back the Feynman expression

Moo M(a) +  M(b)M00 +  M00

—g2u (p s 0 2Q +
(Mf  — Mi) 2

—g u (p s 7) [n] u(ps)

M 2 
2Q • n

(mf — mj u(ps)
1

t — My +  i£

(34)

From (34) we see that the first term on the rhs is indeed the Feynman result. However, the 
second term on the rhs is an unwanted, n-dependent, contact term.

As mentioned before, similar discrepancies are obtained when couplings containing higher 
spin fields (s >1) are used. Therefore, it seems that the Kadyshevsky formalism doesn’t yield 
the same results in these cases as the Feynman formalism when K and k are put to zero. Since 
the real difference between Feynman formalism and Kadyshevsky formalism lies in the treatment 
of the Time Ordered Product (TOP) or ^-function also the difference in results should find its 
origin in this treatment.

In Feynman formalism derivatives are taken out of the TOP in order to get Feynman func
tions, which may yield extra terms. This is also the case in the above example

T r ( x ) ^ v (y)]
M 2 j íA f (x — y) — íó°Sq 4̂(x — y)

Sfi  =  (—¿)2g2 / d4xd4y [^Yo^] x T[4° (x)^V(y)] 4aidv 4b

^  Mextra =  —g2u(p's') [$ u(p.S
2 Q ■ n
~ w

(35)

x

1

x

y

1 1



2 If we include the extra term of (35) on the Feynman side we see that both formalisms yield 
the same result.

Although we have exact equivalence between the two formalisms, the result, though covari
ant, is still n-dependent, i.e. frame-dependent. Of course this is not what we want. As it 
will turn out there is another source of extra terms exactly cancelling for instance the one that 
pops-up in our example ((34), (35)). As mentioned in the introduction we present two methods 
for getting these extra terms cancelling the one in (34) and (35): the TU method is more fun
damental and the GJ method is more systematic and pragmatic. Both methods we will shortly 
introduce and apply to the problem in sections 4.2.2 and 4.2.3, respectively.

4 .2 .2  T akahahsi & U m ezaw a S o lu tion

In order to demonstrate the TU method [10, 11, 12] we start with a rewritten version of the 
Yang-Feldman (YF) equations [19] for a general interaction

$ a (x) =  $ a (x) -  ƒ  d4y R aj3 (d) Da(y) A ret(x -  y) • j^;a(y) , (36)

where $ a (x) and $ a (x) are fields in the Heisenberg Representation (H.R.) and Interaction 
Representation (I.R.), respectively. Furthermore, the vectors D a(x) and ja;a(x) are defined to 
be

Da(x) =  (1,dMl,dMldM2, . . . )  ,

• M  =  (  d C l d C l d C l \  ( m
Ja’a x  y d&a(x) ’ <9 (dMl$ a (x)) ’ <9(<9Ml<9M2$ a (x)) ’ ’

Next, a free auxiliary field $ a (x, a) is introduced, where a is a space-like surface and x does not 
necessarily lie on a. We pose that it has the following form

$ a (x,a) =  $ a (x) +  i  d4y R ap (d)Da(y) A (x -  y) • j^;a(y) , (38)
«/ —̂

Combining (38) with (36) leads to

1
$ a (x) =  $ a (x/cr) +  i  ƒ  d4y R ap (d)Da(y), e(x -  y) A (x -  y) • j^;a(y) .

(39)

This equation will be used to express the fields in the H.R. in terms of fields in the I.R.
In appendix C it is explained that the auxiliary fields and the fields in the I.R. are related 

by a unitary operator using the BMP theory. Also it is shown how the interaction Hamiltonian 
should be deduced.

2If we include the n M-vector in the 0-function of the TOP, which would not make a difference, then we can make 
the replacement Sq ^  n M. This, to  make the result more general.

1 2



Applying these concepts to our example we determine the "currents” via (37)

3  0 a,' 
3  0 b,' 

3

3  0^,

( - g *dM0b • ^g 06 • 0 M) , 
(g idM0 a • ^  - i g 0 a • 0M) ,
( - g ,0) ,

- g  0a*dM06 -  g ^ 7 ^ ,  0 (40)

Using (39) we can express the fields in the H.R. in terms of fields in the I.R., i.e. free fields

0 a (x) =  ^a(x/ a) ,
0b(x) =  4b(x /a) ,

dM^a(x) [dM</>a(x, cr)]æ/(T +   ̂J  d4y [d*d”, e(x -  y)\ A(x -  y) (i '4" )y

=  [dM̂ a (x, a)]x/ ff +  ign^4 b n • 4

dM 0 b(x) = [<9M</>6(x, cr)]æ/(T +  i J  d4y [d*d”, e(x -  y)] A(x -  y) ( - ¿ ^ a • 4 '') l 

[d^4b(x,a)]x/a -  ign^4a n • 4 ,
■0(x)

0^(x)

=  ^ (x /a ) ,

=  4 ^{x/a)  +  ^ f  d4y - g MV - 1 4 , e(x -  y) A(x -  y)

x (-g^aidv4b -  gVY^

g n —4m (x / c t) -  [4>an  • id<f>b + (41)

As can be seen from (39) the first term on the rhs is a free field and the second term contains 
the current expressed in terms of fields in the H.R., which on their turn are expanded similarly. 
Therefore, one gets coupled equations. In solving these equations we assumed that the coupling 
constant is small and therefore considered only terms up to first order in the coupling constant 
in the expansion of the fields in the H.R. Practically speaking, the currents on the rhs of (41) 
are expressed in terms of free fields.

These expansions (41) are used in the commutation relations of the fields with the interaction 
Hamiltonian ((93) of appendix C)

[4a(x), H i (y)] =  iU - 1 (a)A(x -  y) - g  idM0b • +  g *dM0b • U(a)

iA (x -  y) - g  idu.4b • 4M

m 2+ Y7T n ' i d 4b 4an ■ id4b + r4 i '4 )  ~  Q2 4a{n ■ 4)

y

2 2

y
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[^(x), H i  (y)] =  iU 1(ct)(ì/ +  M )A(x -  y) [—g ym-0 • 0M]y U (ct) 
=  i(i</ +  M  )A(x — y)

4  (x), h i  (y)]

- g  • 4̂  +  ^  ^ 0n  • idcj)b +

(  d^3v \
i U - \ * )  A { x _ y)

— g 0 oi<9v06 — g V>7v^ U(ct)

— g2 n„ 4 — g2 nv 4&n • 4

—g 4a*dv4b — g V’Yv^

(42)

As stated below (93) these are the fundamental equations from which the interaction Hamilto
nian can be determined

H i —g 4a *dMi/
g2 g2 

4 ^ - 3  V’Ym V’ • 4M -  y  4a(n • <W2 -  y  </>6(n • 4)2

+
g2

2M 2 2 +  ^  M 2
4an • id 4b + g2

2M 2 4an • id 4b

+O (g3) ... (43)

If equation (41) was solved completely, then the rhs of (41) would contain higher orders in 
the coupling constant and therefore also the interaction Hamiltonian (43). These terms are 
indicated by the ellipsis.

If we want to include the external quasi fields as in appendix B, then the easy way to do this 
is to apply (73) straightforwardly. However, since we want to derive the interaction Hamiltonian 
from the interaction Lagrangian we would have to include a x(x)x(x) pair in (30) similar to 
(73). This would mean that the terms of order g2 in (43) are quartic in the quasi field, where 
two of them can be contracted

x ( x )x (x )x (x )x (x ) = x ( x )9[n(x  ~  x )]x(x ) ■ (44)

Defining the ^-function to be 1 in its origin we assure that all terms in the interaction Hamilto
nian (43) relevant to nN-scattering are quadratic in the external quasi fields, even higher order 
terms in the coupling constant.

The only term of order g2 in (43) that gives a contribution to the first order in the S-matrix 
describing nN-scattering is the second term on the second line in the rhs of (43). Its contribution 
to the first order in the S-matrix is

Sf/p =  — i l  d4xH i (x) = - w
M 2

d4 4an • id 4b

u(p' s')ij,u(ps)n • (q1 + q)

2

y

y

y

2

x
x
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2n • Q
=> M canc = g2 u (p 's ')$ u (p s) m 2 (45)

Indeed we see that this term (45) cancels the extra term in (34).
From (43) one can see that the interaction Hamiltonian contains not only terms of order 

g, but also higher order terms. In our example we see that the g2 terms in the interaction 
Hamiltonian is responsible for the cancellation. In this light we would also like to mention 
the specific example of scalar electrodynamics as described in [20], section 6-1-4. There the 
interaction Hamiltonian also contains a term of order g2, which has the same purpose as in our 
case. The method described in [20] is not generally applicable, whereas the above described 
method, although applied to a specific example, is.

4 .2 .3  G ross & Jackiw  S o lu tion

The essence of the Gross and Jackiw method [13] is to define a different TOP: the T * product, 
which is by definition n-independent

T*(x,y) =  T(x,y; n) +  T(x,y; n) , (46)

Studying the n-dependence is done in the same way as described in subsection 2.1

In our applications we are interested in second order contributions to nN-scattering. There
fore, we analyze the n-dependence of the TOP of two interaction Hamiltonians, where we take 
it to be just H i =  - L I

pal3 SnPT (x , y ,n ') = pal3(x ~ y)p5  [n ' (x ~ y)] [H/(x ),H /(i/)] . (48)

In general one has for equal time commutation relations

J[n(x -  y)] [Hi(x), H i(y)] =  [C(n) +  P a?Sa (n)d^

+ P P»vQa» d ^ d v  +  ...] ¿4(x -  y) . (49)

where the ellipsis stand for higher order derivatives. We will only consider (and encounter) up to 
quadratic derivatives. The S a and Q“  ̂ terms in (49) are known in the literature as Schwinger 
terms.

It should be mentioned that in [13] only the first two terms on the rhs of (49) are considered.
Using the fact that the TOP and therefore also the T * product appears in the S-matrix as 

an integrand, we are allowed to use partial integration for the Sa (n) and Qa@(n) terms. The 
C(n) always vanishes. Furthermore, we use the fact that P a 13 is a projection operator. With 
these considerations we find from (47)- (49) the extra terms

t(x  -  y; n) =  ƒ  dn '3  S 3 (n') +  P MV ^Qp^n') +  QMp(n')) dv ¿4(x -  y) . (50)
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In principle the rhs of (50) can also contain a constant term, i.e. independent of nM. But since 
we are looking for nM-dependent terms only, this term is irrelevant.

Now, we’re going to apply the method of Gross and Jackiw. The ”covariantized” equal time 
commutator of interaction Hamiltonians is

J[n(x -  y)] [Hi(x), H i (y)] =  
1

+  [4nM4 L 4a n • id 4b

+ 4a n • id 4b [r4nv'4]y +  4aid^4b [^n^]y

+  [̂ n^]y [̂ 7m '4]x +  [̂ 7M^]y \.Hr4 \

+ 4a n • id 4b 4a idu,4b + 4aidu4b 4an • id 4b

+  4a (y)n • 4(x)4a (x)4M (y) +  4a(y)4v (x)4a (x)n • 4(y)

+  [4bn • 4]x [4&4M]y +  [4&4M]x [4bn • 4]y j  PMP*dp̂ 4 (x -  y) . (51)

Comparing this with (49) we see that the terms between curly brackets coincide with -  *Sa (n); 
the Qap (n) terms are absent. Therefore, the T-function, representing the compensating terms, 
becomes by means of (50) and (51)

t (x -  y; n) ig
i (  r ^  i 2 r ^  1 24 an  ■ i d 4 b  ̂ +  +  4 an  ■ id  4 b

+ 4a(n • 4 ) 2 + 42(n • 4)2 04(x -  y) . (52)

Its contribution to nN-scattering S-matrix and amplitude is

S (2)

Mc

(~ 0 2 [  J4..J4. . 2V  
2 ! d4 xd4 y

g2 w(pV)n«(ps)

M 2 
2n ■ Q

~ w

[4n4] 4an • id 4b) ó4(x -  y)

(53)

which is the same expression as the cancelling amplitude derived from the TU scheme in (45).

y y

X

y y

4 .2 .4  P  A p p roach

From the forgoing subsections (sections 4.2.3 and 4.2.2) we have seen that if we add all contri
butions, results in the Feynman formalism and in the Kadyshevsky formalism are the same (of 
course we need to put k ' =  k =  0). Also, we have seen from (35) and the forgoing subsections 
that if we bring out the derivatives out of the TOP in Feynman formalism not only do we get 
Feynman functions, but also the n-dependent contact terms cancel out.

Unfortunately, this is not the case in Kadyshevsky formalism. There, all n-dependent contact 
terms cancel out after adding up the amplitudes. So, when calculating an amplitude according

16



to  the Kadyshevsky rules in appendix A one always has to keep in mind the contributions as 
described in sections 4.2.2 and 4.2.3. For practical purposes this is not very convenient.

Inspired by the Feynman procedure we could also do the same in Kadyshevsky formalism, 
namely let the derivatives not only act on the vector meson propagator 3 but also on the quasi 
particle propagator (^-function). In doing so, we know th a t all contact terms cancel out; just 
as in Feynman formalism.

We show the above in formula form.

0[n(x -  y)]d£dVA(+) (x -  y) +  0[n(y -  x )]d £ d £ A « (y  -  x)
=  dx dV0[n(x -  y)]A(+) (x -  y) +  d^dV0[n(y -  x)]A(+) (y -  x)

+*nMn V ¿4(x -  y)
i I dn i f  d4P

Kl +
x / e-iK,in(x-y)e- i P (x - y ) +  eiK,1n(x-y)eiP(x-y)

+*nMn V¿4(x -  y) , (54)

where P  =  P  +  nK1. In this way the second order in the S-matrix becomes

S (2) =  - g 2 ƒ  d4xd4y [u(p's ' b Mw(ps)] (q' +  q)v e-lx(q-q' )eiy(p-p)

* r dKi r d4P ( , W D 2 , P ^ P v
— —  ——g-0(P )(5(P -  My) ( — + 2 

2n J  Ki +  *e J  (2n)3 \
^ ^e-iKin(x-y)e-iP (x-y) einn; x-inny +  e^ in (x -y) ̂ iP (x-y) e-inna x+inny^j

+*g2 ƒ d4x [u(p's' )n«(ps)] n  • (q' +  q) e-ix(q-q ' - p  +p-nK ' +nK) . (55)

We see tha t the second term  on the rhs of (55) brings about an amplitude, which is exactly the 
same as in (34) and (35) and is to be cancelled by (45) and (53).

Performing the various integrals correctly we get

/ \ i ki = At • n -  At +  \  (V + k) n 
\  P  =  At + 5 (V + k) n

< « * { ? :  ,56)
This yields for the invariant amplitudes

M i al  =  - g2 u(p 's ' ) 2$  +  ^ 2 "  -  Mi) + - ( k ' -  n)iji + t/lnj

X ^ ( ^  ƒ  ̂ ^  4 ^  Up'q Upq' ) -j- 2kQ • Tl^

1 1

u(ps)

2At A t • n  +  P -  At +  *£

3W ith  ’propagator’ we m ean the A+ (x — y) and not the Feynman propagator A F (x — y).
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m KK =  - g 2 u(p 's ') 2 $ +  2 "  -  +  2 ( k /  _  K ) ^  _

x ( (m 2f  -  m?) +  -  (spg -  sp,q, +  Mp/g -  wpg,) -  2kQ • n w(ps)

1 1

M
2At - A t  • n  +  p -  At +  *£ 

(M f -  Mi)
M (a) +  M (b)M 00 +  M00

- g  u (p 's ') 2$  + (m^ -  m 2) u(ps)
t  -  m 2  +  *e ’

(57)

where k =  ^ («' +  k). As before we get back the Feynman expression for the amplitude if we add 
both amplitudes obtained in Kadyshevsky formalism and put k ' =  k =  0. The big advantage 
of this procedure is tha t we do not need to worry about the contribution n-dependent contact 
terms because they cancelled out when introducing PP .

It should be noticed however tha t the PP-method is only possible when both Kadyshevsky 
contributions at second order are added. This becomes clear when looking at the first two lines 
of (54): Letting the derivatives also act on the 0-function gives compensating terms for the 
A (+) (x -  y)-part and for the A (-) (x -  y)-part. Only when added together they combine to the 
£4 (x -  y)-part.

Also it becomes clear from (54) tha t at least two derivatives are needed to generate the ¿4( x -  
y)-part. Therefore, when there’s only one derivative, for instance in the case of baryon exchange 
(so, no derivatives in coupling only in the propagator) at second order, the ¿4(x -  y)-part is not 
present and it is not necessary to use the P-m ethod. In these cases it doesn’t m atter for the 
summed diagrams whether or not the PP-method is used, however for the individual diagrams 
it does make a difference. This ambiguity is absent in Feynman theory, there derivatives are 
always taken out of the TOP (which is similar to the P-m ethod, as discussed above) in order 
to come to Feynman propagators.

In the forgoing we have demonstrated the P-m ethod for simplified vector meson exchange and 
strictly speaking for K =  K =  0. We stress, however, th a t this method is generally applicable, 
i.e. for k ' , k =  0 and for general couplings containing multiple derivatives and /o r higher spin 
fields.

x

1

4.3 R eal V ector M eson E xchange

Now th a t we have discussed how to deal with multiple derivatives and /or higher spin fields in 
the Kadyshevsky formalism by means of the simplified vector meson exchange example, we’re 
prepared to deal with real vector meson exchange. In order to do so we use the interaction 
Lagrangians as in (19b) and (20b). From these interaction Lagrangians we distillate the already 
exposed vertex function in (31) (second line) and

K n n  =  9 V ^  +  ^ ( P ' - P ) 0 a ^  . (58)

The Kadyshevsky diagrams representing vector meson exchange are already exposed in figure
4. Applying the Kadyshevsky rules of appendix A and the PP method described in section 4.2.4
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we obtain the following amplitudes

M (a) - g v p p  u (p 's ') 2 g v  Q

gv
Mv2

f /  1 1

+  2 M y  2 Ûpq' Up'q  ̂ ~  2 Ŝp' q' Spq^

~  M 2" m  ~  2 (y 2 ^ p'p ^q' q  ̂ Upq' Spq

1 2+ 2 M'ijin +  — (k ' — k ) — (p'  +  p) • nn J

1 1
X  s p q )  ^  ^ ( U Pqr u p rq)  2 KTt  • Q

1 1

((p s)

2At At • n  +  p  -  At +  *£

M (b)
=  -g v p p  «(p 's ') 2gv Q

^  M 2 (4 i s p ; q ; s p q  ^  U p q '  U p ' q )  2 k Q  • T£

fv
2Mv

1 1
“1“  ^  TI i- ( 4 M $  +  ^  ( u p q ; +  u p ;q)  2 ( S P / Q,/ “1“  S p g )

-  1 7 2 "  (  A f 2 +  t o 2 -  -  ( - ( t p ' p  +  t q ’ q)  +  w p g / +  spg
M ?

—2Mt/bn +  — (k7 — k)2 +  (p7 +  p) •

1 1
X  s f>q) ^ { U Pqr U p 'q )  2 K ' i l  • Q

1 1

(ps)

2At - A t  • n  +  p  -  At +  *£
(59)

The sum of the two in the limit of K =  K =  0 yields

M 00 =  - g v p p  u (p 's ') 

1
2̂  + 2&  ((2MV

t  — M y  +  i£

( ps )

(60)

which is, again, the Feynman result [3].
Just as in section 4.1 we study the n-dependence of the amplitude. This, in light of the

n

u — s

x
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n-dependence of the Kadyshevsky integral equation (see section 2.1).

M (a+b)
m 0K) +  m 0K),

- g v p p  u(ps)

1

29 v $  + 2M v  +  2 <yllpq' +  Up,q>

“ o ( v ? '  +  SP?)2

/i _  «
w(ps)-------

A t (At • n )2 — (Aj — f ) +  i

gv f v  K
2M3

(ps) ^ ( p 1 + p)  ■ n(Q -n)n ( A t -  0

+  o ip' +P)  - « ( V i '  - s pq+ u pq> - u p>q) At -n  8

—n ■ Q f  M 2 +  m 2 — — f —(tp'p +  t q'q) +  +  Spg'j +  y

+

x A t • n

gvppn _ 
~ M f

1
u(ps) —

1

u(p 's ')

At (At • n)2 — ( f  — At)2 +  *£

^   ̂ ̂ lv'S p /q / ~ r  ^p 'q )( ^  +  M v  )  U ( W

+  Kn • Q M(PS) 7TT-
1

2At At • n +  — At +  is
(61)

Differentiating this with respect to n a in the same way as in (28) we know tha t the result will 
contain an overall factor of k. This can be seen as follows: The first term  in (61) is very similar 
to M0a+b) in (28). Therefore, the overall factor of k when differentiating with respect to n a is 
obvious. All other terms in (61) contain already an overall factor of k, which doesn’t change 
when differentiating.

As can be seen from (61) the numerator is of higher degree in k then the denominator. 
Therefore, the function h(n) in (16) will not be of order O(-^r) and the ’’form factor” (18) is 
necessary.

In (59) as well as in (26) we have taken u and up spinors. The reason behind this is pair 
suppression which we will discuss in paper II.

K

1

1

Appendices
A K adyshevsky R ules
Just as in Feynman theory Kadyshevsky amplitudes can be represented by Kadyshevsky dia
grams. Since the basic starting points are the same as in Feynman theory we take a general 
Feynman diagram and give the Kadyshevsky rules from there on to construct the amplitude 
M fi . Here, we define the amplitude as

S f i =  Sfi -  i(2n)2¿4 (Pf  -  Pi) Mf i  , (62)
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where P f / i is the sum of the final/initial momenta.

Kadyshevsky Rules:

1) Arbitrarily number the vertices of the diagram.

2) Connect the vertices with a quasi particle line, assigned to it a momentum nKs (s =  1 . . .  n - 1). 
Attach to vertex 1 an incoming initial quasi particle with momentum nK and attach to vertex 
n  an outgoing final quasi particle with momentum nK ' 4.

3) Orient each internal momentum such tha t it leaves a vertex with a lower number than the 
vertex it enters. If 2 fermion lines with opposite momentum direction come together in one 
vertex assign a +  symbol to one line and a -  to the other. Each possibility to do this yields a 
different Kadyshevsky diagram.

4) Assign to each internal quasi particle line a propagator K .

5) Assign to all other internal lines the appropriate W ightman function of (63). Assign to a 
fermion line with a ±  symbol: S (±) (P ) (see 3))

6) There’s momentum conservation at the vertices, including the quasi particle momenta.

7) Integrate over the internal quasi momenta: ƒ—o d«s .

However, since we use Kadyshevsky diagrams as input for an integral equation we allow for external quasi particles.

A (+)(P ) =  0 ( P > ( P 2 -  M 2) ,
S (±)(P ) =  A(1/2)( ± P ) 0 (P 0)£(P 2 -  M 2) 
A ^ ( P ) =  A # ( P ) 0 (P o)J (P 2 -  M 2) , 

S {± )(P ) =  A[?/2)( ± P ) 0 ( P > ( P 2 -  M 2) (63)

where

A&/2)(P ) =  (P  +  M ) ,

(64)

4Obviously these quasi particle may not appear as initial or final states, since they are not physical particles.
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8) Integrate over those internal momenta not fixed by momentum conservation at the vertices:
r°° d4P

J — oo ( 2 n ) 3 '

9) Include a — sign for every fermion loop.

10) Include a — sign for identical initial or final fermions.

11) Repeat the various steps for all different numberings in 1.

It is clear from 3) and 11) tha t one Feynman diagram leads to several Kadyshevsky diagrams. 
Generally, one Feynman diagram leads to n! Kadyshevsky diagrams, where n  is the number of 
vertices (or; the order). Especially for higher order diagrams this leads to a dramatic increase 
of labour. Fortunately, we will only consider second order diagrams.

A few remarks need to be made about these rules as far as the choice of definition is concerned. 
In 3) we have followed [5] to orient the internal momenta. Furthermore we have chosen to use 
the integral representation of the 0-function

,-iKin^(x-y)

2it J 1 k i  +  ie
i / e

' [ n - ( x - y ) ]  =  —  d K i -------- —----- , (65)

instead of its complex conjugate. Since the 0-function is real, this is also a proper representation, 
originally used in the papers of Kadyshevsky. To understand why we have chosen to deviate 
from the original approach, consider the S-matrix

°° /*°
S =  1 +  (—i)n / d4xi . .. d4xn 0[n(xi — X2 )] . .. 0[n(xn - i — x n )]

= 1 3 —°

x H i ( x i ) . . .  H i (xn) . (66)

In each order Sn there is a factor (—i )n already in the definition. In tha t specific order there are 
(n — 1) 0-functions, each containing a factor i from the integral representation (65). Therefore, 
every Sn will, regardless the order, contain a factor (—i). Hence, the amplitude Mfi ,  defined in 
(62), will not contain overall factors of i, anymore.

The momentum space S ( - ) (P)-functions differ an overall minus sign by their coordinate 
space analogs (0|V(x)V(y)|0) =  S ( - ) (x — y). The reason for tha t is twofold. In many cases the 
W ightman functions S ( - ) (x — y), including the overall minus sign, appear in combination with 
the Normal Ordered Product (NOP): N ("̂ VO =  — N (V^). Therefore, the minus signs cancel. In 
all other cases the W ightman functions S ( - ) (x — y) appear in fermion loops and are therefore 
responsible for the fermion loop minus sign in 9), since every fermion loop will contain an odd 
number of S ( - ) (x — y) functions. We stress tha t this method of defining the Kadyshevsky rules 
for fermions differs from the original one in [7].
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B Second Q uantization
When discussing the Kadyshevsky rules in subsection A and the Kadyshevsky integral equation 
in (10) we allowed for quasi particles to occur in the initial and final state. In order to do this 
properly a new theory needs to be set up containing quasi particle creation and annihilation 
operators. It is set up in such a way tha t external quasi particles occur in the S-matrix as 
trivial exponentials so tha t when the external quasi momenta are taken to be zero the Feynman 
expression is obtained. We, therefore, require tha t the vacuum expectation value of the quasi 
particles is the 0-function

< 0 |x(nx)x(nx  ' )|0 > =  0[n(x — x 1)] , (67)

and tha t a quasi field operator acting on a state with quasi momentum (n)« only yields a trivial 
exponential

x(nx)|K > =  e-iKnx ,
< K|X(nx) =  eiKnx . (68)

Assuming th a t a state with quasi momentum (n)« is created in the usual way

a^(«)|0 > =  |k > ,
< 0|a(«) =  < k | , (69)

we have from the requirements (67) and (68) the following momentum expansion of the fields

i f  dK
X(nx) = —  — -  e - ^ a ( K) 

2n J k +  i£
d«

X(nx') = —  — —  e“ ”x a t(K) , (70)
2n J k +  i£

and the fundamental commutation relation of the creation and annihilation operators

[a(K),a^(K' )] =  —i2n«^(« — k ' ) . (71)

From this commutator (71) it is clear tha t the quasi particle is not a physical particle nor a 
ghost.

Now th a t we have set up the second quantization for the quasi particles we need to include 
them in the S-matrix. This is done by redefining it

S

where

1 +  J 3 ( —i)n J  d4x i . . . d 4xnH i (xi) . . .  H i  (xn) , (72)

H i(x ) =  H i (x)x(nx)x(nx) . (73)

In this sense contraction of the quasi fields causes propagation of this field between vertices, 
just as in the Feynman formalism. Those quasi particles th a t are not contracted are used to
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annihilate external quasi particles form the vacuum.

S (2)(p /q 'n « ; psqn«) =

=  (—i)2 J  d4x id4x 2 < n N x |H i(x i)H i(x 2 ) |n N x  >

=  (—i)2 j  d4x id4x2 < 0|b(p's/)a(q/)a(k/)

x (« x i)H / (x i)x (n x i )x(«x2)H / (x2)x(nx2) a^(K)a^(q)b^^s)|0 >

(—¿)2 / d4x 1d4x 2 einKX1 eK X1 — IUKX2

x < 0|b(p/s /)a(q/)H i(x i)0[n(x i — x 2)]H i(x2 )flt(q)&t(ps)|0 > . 

For the n and N  fields we use the well-known momentum expansion 

f d31

(74)

4 (x) [a(1)e-i1x +  at (1)ei1x] ,
J  (2n)32 E
_ ƒ d3 k

tp(x) = j -¡—- ^ - ¡ = r [ b ( k , r ) u ( k , r ) e ~ tkx + cÛ(k , r )v (k, r )e lkx] (75)
(2n)32Ek

where the creation and annihilation operators satisfy the following (anti-) commutation relations

[a(k), a t (l)] (2n)3 2E k ¿3(k -  l)
{b(k, s), bt (1, r)} =  (2n)3 2Ek ¿sr¿3(k — l) =  {d(k, s), dt (1, r)} . (76)

Putting k / =  k =  0 in (74) we see tha t we get the second order in the S-matrix expansion for 
nN -scattering as in Feynman formalism. Of course this is what we required from the beginning: 
external quasi particle momenta only occur in the S-matrix as exponentials.

So, we know now how to include the external quasi particles in the S-matrix and therefore 
we also know what their effect is on amplitudes. For practical purposes we will not use the 
S-matrix as in (72), but keep the above in mind. In those cases where the (possible) inclusion 
of external quasi fields is less trivial we will make some comments.

x

C B M P  T heory
According to Haag’s theorem [17] in general there does not exist a unitary transformation which 
relates the fields in the I.R. and the fields in the H.R. On the other hand there is no objection 
against the existence of an unitary U[a] relating the TU-auxiliary fields and the fields in the 
I.R.

$ a (x, a) =  U- i [a] $ a (x) U[a] . (77)

Here, we follow the framework of Bogoliubov and collaborators [14, 15, 16], to which we refer 
to  as the BMP theory, to prove (77) in a straightforward way (see appendix C.2).

The BMP theory was originally constructed to bypass the use of an unitary operator U as 
a mediator between the fields in the H.R. and in the I.R.
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C .1 Set-up
In the description of the BMP theory we will only consider scalar fields. By the assumption 
of asymptotic completeness the S-matrix is taken to be a functional of the asymptotic fields 
&as,p(x), where as =  in, out. In the following we use in-fields, i.e. 4 P(x) =  ^in,P(x)

S =
n=1

1 +  ^  ƒ  d4x i .. . d4x n S „ (x ia i,  .. . ,x „ a n ) ■

X : 4ai (xi) . . . 4 a n (xn) :  . (78)

Here, concepts like unitarity and the stability of the vacuum, i.e. (0|S|0) =  1, and the 1-particle 
states, i.e. (0|S|1) =  0 are assumed. The Heisenberg current, i.e. the current in the H.R., is 
defined as 5

J  p(x) =  SS . (79)
d^p(x)

We note th a t for a hermitean field <̂p (x) the current is also hermitean, due to unitarity. Micro
causality takes the form, see [15], section 17 6,

¿ J P{x)
0 , for x < y . (80)

It can be shown tha t the notion of microcausality is reflected in the expression of the S- 
matrix as the Time-Ordered exponential. See [15] for the details on this point of view. It can 
also be shown tha t with the current (79) the asymptotic fields <ftin/ 0ut,p (x) satisfy a YF type of 
equation (as in (87))

(x) $in/put,p(x) +  ^  d y Aret/adv(x y) J p(y) , (81)

giving the Heisenberg fields 0 p(x) in terms of the ^ in/ 0ut (x)fields.

Lehmann, Symanzik, and Zimmermann (LSZ) [21] formulated an asymptotic condition utilizing 
the notion of weak convergence in the Hilbert space of state vectors. See e.g. [22] for an detailed 
exposition of the LSZ-formalism. The correspondence of BMP theory with LSZ is obtained by 
the identification

J p(x) = - i S f =  ( □  +  m 2) 4>p{x) . (82)

5Note th a t in [16] the out-field is used. Then

JP(x) = i J S, .5<pp(x)

Also, we take a minus sign in the definition of the current.
6 Here x  <  y  means either (x — y ) 2 > 0 and x 0 <  y0 or (x — y ) 2 < 0. So, the point x  is in the past of or is spacelike 

separated from the point y.
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As is explained in for instance [16], the local commutivity of the currents follows from mi
crocausality (80). Using the YF equations one can show th a t for space-like separations the 
fields in the H.R. commute with the currents and among themselves, as was assumed in the 
LSZ-formalism. For more details and results of BMP see [14, 15, 16].

C .2 A pp lication  to  Takahashi-U m ezaw a schem e
In this subsection we introduce the auxiliary field similar to (38)

4(x, a) =  4(x) — / d4x / A(x — x/) J (x  /) ,
J -œ>

(83)

and prove th a t 4(x) and 4(x, a) satisfy the same (usual) commutation relations. Such a relation 
justifies the existence of an unitary operator connecting the two as in (77).

The difference of the commutation relations is, using (83),

4 (x ,a ), 4 (y ,a)

- i  d4y / A(y — y/)
J -œ>

4 (x),4 (y) 

4 (x), J ( y /)
' — ̂  
nC nC

+  / d4x7 A (x — x /)
J —̂

4 (y), J(x / )

/ C pc
ƒ d4x /d4y/ A(x — x /)A(y — y /) J (x /), J (y /) (84)

Since the S-operator is an expansion in asymptotic fields, so is J  (x) by means of its definition 
in terms of this S-operator (79). Now, from the commutation relations of the asymptotic fields 
one has _ _

j4„./ a / „  „ /\ J c (y)4 p(x ), J c (y) S^p (x/)
(85)

Using this in (84) we have

4 (x ,a ), 4 (y ,a) 4 (x), 4 (y)

/

C Ptt
d4y / / d4x /A (x — x / )A(y — y / )

J —̂C/C
d4x/ ƒ d4y / A(x — x/)A(y — y /)

S<f>(x') 
^  ô3(x')

m / )

—i f  d x 
J —̂ ,iV L <iVA(" ■y) A(!' - (Hi -

0 . (86)

Cancellation takes place in (86) when the second integral of the first two term  on the rhs in 
(86) is split up: J -oo =  . The remaining terms are zero because of the microcausility
condition (80). Although we shown the proof for scalar fields only, the generalization to other 
types of fields is easily made.
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Complementary to  what is in [10, 11, 12] we explicitly show that the unitary operator in (77) 
is not any operator but the one connected to the S-matrix. We, therefore, consider (general) 
*n- and out-fields. Their relation to the fields in the H.R. is

$ a (x) =  &in,a (x) +  ƒ  d4y R ap (d ) Aret(x  -  y) Ja(y)

=  ®out,a (x) +  ƒ  d4y Raa (d) A odv (x -  y) Ja(y ) , (87)

where A ret(x -  y) =  -0 ( x 0 -  y0)A(x -  y) and A odv(x -  y) =  0(y0 -  x 0)A(x -  y).
Equation (87) makes clear tha t the choice of the Green function determines the choice of 

the free field (in- or out-field) to be used. In this light we make the following identification: 
(x, - t o )  =  &in,a(x), since we have used the retarded Green function in section 4.2.2 (text 

below (36)). W ith (87) we can also relate the out-field to the auxiliary field $ a (x, to) =
^ out,a (x).

Using these identifications in (77) we obtain the relation between $ a ,in (x) and § aout (x)

^a,in (x) 
^in,a (x)

=  U [—to]U[to] $ a,out(x) U [to]U[—to]

S $out,aS  — 1 (88)

Obviously, the operator connecting the in- and out-fields is the S-matrix, where the relation 
between U [a] and the S-matrix is

U [a] =  T 

U [to] =  S

exp ( — i d xH i(x) 
«/ —̂

U [—to] =  1 . (89)

To make contact with the interaction Hamiltonian we follow [10, 11, 12] for completion by 
realizing tha t the unitary operator satisfies the Tomonaga-Schwinger equation

.¿U [a]
Ja(x)

=  H i(x; n)U[a] =  U[a] H I (x /a ; n) . (90)
x/ c

Here, the interaction Hamiltonian will in general depend on the vector n M (x) locally normal to 
the surface a(x), i.e. n M(x)daM =  0. It is hermitean because of the unitarity of U[a]. Then, 
from (77) and (90) one gets that

. ¿ $ a (x, a)

M y )
U—1[a] $a(x), H i (y; n) U [a] .

On the other hand, varying (38) with respect to a(y) gives

. (5$a (x , a)

* M s/)
i Da(y) R ap (d) A(x — y) • j^;a(y) .

(91)

(92)

Comparing (91) and (92) gives the relation

$ a(x ), H i (y; n) i U [a] Da(y) R a/3(d) A(x — y) • j f ta(y) U—1[a] .

(93)

This is the fundamental equation by which the interaction Hamiltonian must be determined.

C
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D Rem arks on the H aag Theorem
Here, we take a closer look at the connection between the fields in the H.R. and in the I.R. in 
the covariant formulation of Tomonaga and Schwinger [23, 24]

$ a (x) =  U- 1 [a] $ a (x) U[a] , (94)

This in light of the Haag theorem [17], which states tha t if there is an unitary operator connecting 
fields in two representations at some time (as in (94)), where the field in one representation is 
free, both fields are free. This would lead to a triviality.

The question is whether this situation (94) is applicable to our case. In order to answer that 
question we look at the results of the previous subsection (appendix C ). By introducing the 
auxiliary field in the scalar case as in (38) (or for general fields as in (83)) we proved (77) using 
BMP theory.

Now, we start with (36) and use similar arguments to come to

/ t t
d4y D 0(y) R a/}(d) 0[n(x -  y)]A(x -  y) • jp-a(y)

-tt

/ t t
d4y 0[n(x -  y)] D 0(y) R ap (d) A(x -  y) • j f ta(y)

-tt

/ tt
d4y [Da(y) R ap (d), 0[n(x -  y)]] A(x -  y) • j^;a (y) ,

t t
U- 1 [a] $ a (x) U [ a ] ^

1 f t t
+  X /  d4y[D a(y) R al3( d ) , e ( x - y ) ] A ( x - y ) - j l3.a(y) . (95)

2 J — tt

7 The above is different from what is exposed in [22] (ch 17.2). The difference is the commutator 
part in (95) and this term  is non-zero for theories with couplings containing derivatives and 
higher spin fields, carefully excluded in the treatm ent of [22]. Therefore (95) could be seen as 
an extension of what is written in [22].

Returning to Haag’s theorem we see tha t if the last term  in (95) is absent there is an unitary 
operator connecting $ a (x) and $ a (x) and therefore they are both free fields. Such theories can 
then be considered as trivial, although they can still be useful as effective theories.

In our application we use various interaction Lagrangians (for the overview see section 3) 
to  be used in order to describe the various exchange (and resonance (paper II)) processes. 
W hether or not the non-vanishing commutator part in (95) is present depends on the process 
under consideration. In the vector meson exchange diagrams (section 4.3) and in the spin-3/2 
exchange and resonance diagrams (paper II) those commutator parts are non-vanishing. If we 
include pair suppression in the way we do in paper II also in the spin-1/2 exchange and resonance 
diagrams the commutator parts will be non-vanishing. So, if we take the model as a whole (all 
diagrams) then it is most certainly not trivial in the sense of the Haag theorem.

7We have included the n M-vector in the first line of (95), which causes no effect. The reason for this inclusion is 
th a t we can keep the surface a  general, though space-like.

$ a (x) =

^ a (x)
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