35 research outputs found

    In Silico Prediction and Analysis of Caenorhabditis EF-hand Containing Proteins

    Get PDF
    Calcium (Ca+2) is a ubiquitous messenger in eukaryotes including Caenorhabditis. Ca+2-mediated signalling processes are usually carried out through well characterized proteins like calmodulin (CaM) and other Ca+2 binding proteins (CaBP). These proteins interact with different targets and activate it by bringing conformational changes. Majority of the EF-hand proteins in Caenorhabditis contain Ca+2 binding motifs. Here, we have performed homology modelling of CaM-like proteins using the crystal structure of Drosophila melanogaster CaM as a template. Molecular docking was applied to explore the binding mechanism of CaM-like proteins and IQ1 motif which is a ∼25 residues and conform to the consensus sequence (I, L, V)QXXXRXXXX(R,K) to serve as a binding site for different EF hand proteins. We made an attempt to identify all the EF-hand (a helix-loop-helix structure characterized by a 12 residues loop sequence involved in metal coordination) containing proteins and their Ca+2 binding affinity in Caenorhabditis by analysing the complete genome sequence. Docking studies revealed that F165, F169, L29, E33, F44, L57, M61, M96, M97, M108, G65, V115, F93, N104, E144 of CaM-like protein is involved in the interaction with IQ1 motif. A maximum of 170 EF-hand proteins and 39 non-EF-hand proteins with Ca+2/metal binding motif were identified. Diverse proteins including enzyme, transcription, translation and large number of unknown proteins have one or more putative EF-hands. Phylogenetic analysis revealed seven major classes/groups that contain some families of proteins. Various domains that we identified in the EF-hand proteins (uncharacterized) would help in elucidating their functions. It is the first report of its kind where calcium binding loop sequences of EF-hand proteins were analyzed to decipher their calcium affinities. Variation in Ca+2-binding affinity of EF-hand CaBP could be further used to study the behaviour of these proteins. Our analyses postulated that Ca+2 is likely to be key player in Caenorhabditis cell signalling

    Microwell-mediated Control of Embryoid Body Size Regulates Embryonic Stem Cell Fate Via Differential Expression of WNT5a and WNT11

    No full text
    Recently, various approaches for controlling the embryonic stem (ES) cell microenvironment have been developed for regulating cellular fate decisions. It has been reported that the lineage specific differentiation could be affected by the size of ES cell colonies and embryoid bodies (EBs). However, much of the underlying biology has not been well elucidated. In this study, we used microengineered hydrogel microwells to direct ES cell differentiation and determined the role of WNT signaling pathway in directing the differentiation. This was accomplished by forming ES cell aggregates within microwells to form different size EBs. We determined that cardiogenesis was enhanced in larger EBs (450 μm in diameter), and in contrast, endothelial cell differentiation was increased in smaller EBs (150 μm in diameter). Furthermore, we demonstrated that the EB-size mediated differentiation was driven by differential expression of WNTs, particularly noncanonical WNT pathway, according to EB size. The higher expression of WNT5a in smaller EBs enhanced endothelial cell differentiation. In contrast, the increased expression of WNT11 enhanced cardiogenesis. This was further validated by WNT5a-siRNA transfection assay and the addition of recombinant WNT5a. Our data suggest that EB size could be an important parameter in ES cell fate specification via differential gene expression of members of the noncanonical WNT pathway. Given the size-dependent response of EBs to differentiate to endothelial and cardiac lineages, hydrogel microwell arrays could be useful for directing stem cell fates and studying ES cell differentiation in a controlled manner.National Institutes of Health (U.S.) (DE019024, HL092836, and EB007249
    corecore