456 research outputs found

    Application of DWF to heavy-light mesons

    Full text link
    We consider application of domain wall fermions to quarks with relatively heavy masses, aiming at precision calculations of charmed meson properties. Preliminary results for a few basic quantities are presented.Comment: Lattice2003(heavy), 3 pages, 3 figure

    Financial Time Series Analysis of SV Model by Hybrid Monte Carlo

    Full text link
    We apply the hybrid Monte Carlo (HMC) algorithm to the financial time sires analysis of the stochastic volatility (SV) model for the first time. The HMC algorithm is used for the Markov chain Monte Carlo (MCMC) update of volatility variables of the SV model in the Bayesian inference. We compute parameters of the SV model from the artificial financial data and compare the results from the HMC algorithm with those from the Metropolis algorithm. We find that the HMC decorrelates the volatility variables faster than the Metropolis algorithm. We also make an empirical analysis based on the Yen/Dollar exchange rates.Comment: 8 pages, 3 figures, to be published in LNC

    Current status of Dynamical Overlap project

    Full text link
    We discuss the adaptation of the Hybrid Monte Carlo algorithm to overlap fermions. We derive a method which can be used to account for the delta function in the fermionic force caused by the differential of the sign function. We discuss the algoritmic difficulties that have been overcome, and mention those that still need to be solved.Comment: Talk given at Workshop on Computational Hadron Physics, Nicosia, September 2005. 8 page

    The phase structure of lattice QCD with two flavours of Wilson quarks and renormalization group improved gluons

    Full text link
    The effect of changing the lattice action for the gluon field on the recently observed [1] first order phase transition near zero quark mass is investigated by replacing the Wilson plaquette action by the DBW2 action. The lattice action for quarks is unchanged: it is in both cases the original Wilson action. It turns out that Wilson fermions with the DBW2 gauge action have a phase structure where the minimal pion mass and the jump of the average plaquette are decreased, when compared to Wilson fermions with Wilson plaquette action at similar values of the lattice spacing. Taking the DBW2 gauge action is advantageous also from the point of view of the computational costs of numerical simulations.Comment: 34 pages, 3 tables, 14 figures; revised version to appear in EPJ

    The Kentucky Noisy Monte Carlo Algorithm for Wilson Dynamical Fermions

    Get PDF
    We develop an implementation for a recently proposed Noisy Monte Carlo approach to the simulation of lattice QCD with dynamical fermions by incorporating the full fermion determinant directly. Our algorithm uses a quenched gauge field update with a shifted gauge coupling to minimize fluctuations in the trace log of the Wilson Dirac matrix. The details of tuning the gauge coupling shift as well as results for the distribution of noisy estimators in our implementation are given. We present data for some basic observables from the noisy method, as well as acceptance rate information and discuss potential autocorrelation and sign violation effects. Both the results and the efficiency of the algorithm are compared against those of Hybrid Monte Carlo. PACS Numbers: 12.38.Gc, 11.15.Ha, 02.70.Uu Keywords: Noisy Monte Carlo, Lattice QCD, Determinant, Finite Density, QCDSPComment: 30 pages, 6 figure

    GRIP1 enhances estrogen receptor α-dependent extracellular matrix gene expression in chondrogenic cells

    Get PDF
    SummaryObjectiveThe role of postmenopause on the pathogenesis of cartilage degeneration has been an open question. We assessed cartilage degeneration in estrogen receptor (ER)α null mice and examined the role of glucocorticoid receptor-interacting protein 1 (GRIP1) in the ERα-dependent transcription of a type II collagen gene (col2a1) with special reference to a crosstalk with the transforming growth factor (TGF)-β signaling pathway.MethodsThe vertebral cartilaginous endplate from female ERα null mice was subjected to histological analyses. Col2a1 expression of primary chondrocytes (PCs) obtained from ERα null mice after 17β-estradiol (E2) and TGF-β1 stimulation was examined by reverse transcription polymerase chain reaction (RT-PCR). Estrogen response element (ERE) or col2a1 promoter–enhancer luciferase reporter system was used to investigate the crosstalk among ERα, GRIP1, and MKK6. Col2a1 expression and glycosaminoglycan (GAG) content were measured in ATDC5 cells treated with GRIP1 small interfering RNA (siRNA).ResultsERα deficiency clearly accelerated impairment of the vertebral cartilaginous endplate. E2 and TGF-β1 stimulation increased col2a1 expression in PC from wild-type mice, but not that from ERα null mice. The same stimulation increased the col2a1 promoter–enhancer reporter activity, and the elevated activity was decreased by dominant-negative ERα and p38 mitogen-activated protein kinase (MAPK) inhibitor. GRIP1 increased the E2-dependent ERE activation in the presence of ERα and constitutive-active MKK6. GRIP1 siRNA repressed col2a1 expression and GAG production in ATDC5 cells.ConclusionsCrosstalks between ERα/GRIP1 and TGF-β/MKK6/p38 MAPK pathway have protective roles on cartilage metabolism via regulating the extracellular matrices expression. The finding may lead to the development of a novel therapeutic approach for cartilage degeneration

    The Deconfinement Phase Transition in One-Flavour QCD

    Full text link
    We present a study of the deconfinement phase transition of one-flavour QCD, using the multiboson algorithm. The mass of the Wilson fermions relevant for this study is moderately large and the non-hermitian multiboson method is a superior simulation algorithm. Finite size scaling is studied on lattices of size 83×48^3\times 4, 123×412^3\times 4 and 163×416^3\times 4. The behaviours of the peak of the Polyakov loop susceptibility, the deconfinement ratio and the distribution of the norm of the Polyakov loop are all characteristic of a first-order phase transition for heavy quarks. As the quark mass decreases, the first-order transition gets weaker and turns into a crossover. To investigate finite size scaling on larger spatial lattices we use an effective action in the same universality class as QCD. This effective action is constructed by replacing the fermionic determinant with the Polyakov loop identified as the most relevant Z(3) symmetry breaking term. Higher-order effects are incorporated in an effective Z(3)-breaking field, hh, which couples to the Polyakov loop. Finite size scaling determines the value of hh where the first order transition ends. Our analysis at the end - point, heph_{ep}, indicates that the effective model and thus QCD is consistent with the universality class of the three dimensional Ising model. Matching the field strength at the end point, heph_{ep}, to the κ\kappa values used in the dynamical quark simulations we estimate the end point, κep\kappa_{ep}, of the first-order phase transition. We find κep0.08\kappa_{ep}\sim 0.08 which corresponds to a quark mass of about 1.4 GeV .Comment: LaTex, 25 pages, 18 figure

    Scaling Study of Pure Gauge Lattice QCD by Monte Carlo Renormalization Group Method

    Full text link
    The scaling behavior of pure gauge SU(3) in the region β=5.857.60\beta=5.85 - 7.60 is examined by a Monte Carlo Renormalization Group analysis. The coupling shifts induced by factor 2 blocking are measured both on 324^4 and 164^4 lattices with high statistics. A systematic deviation from naive 2-loop scaling is clearly seen. The mean field and effective coupling constant schemes explain part, but not all of the deviation. It can be accounted for by a suitable change of coupling constant, including a correction term O(g7){\cal O}(g^7) in the 2-loop lattice β\beta-function. Based on this improvement, σ/ΛMSnf=0\sqrt{\sigma}/\Lambda_{\overline {MS}}^{n_f=0} is estimated to be 2.2(±0.1)2.2(\pm 0.1) from the analysis of the string tension σ\sigma.Comment: 4 pages of A4 format including 7-postscript figure

    Numerical Methods for the QCD Overlap Operator IV: Hybrid Monte Carlo

    Full text link
    The extreme computational costs of calculating the sign of the Wilson matrix within the overlap operator have so far prevented four dimensional dynamical overlap simulations on realistic lattice sizes, because the computational power required to invert the overlap operator, the time consuming part of the Hybrid Monte Carlo algorithm, is too high. In this series of papers we introduced the optimal approximation of the sign function and have been developing preconditioning and relaxation techniques which reduce the time needed for the inversion of the overlap operator by over a factor of four, bringing the simulation of dynamical overlap fermions on medium-size lattices within the range of Teraflop-computers. In this paper we adapt the HMC algorithm to overlap fermions. We approximate the matrix sign function using the Zolotarev rational approximation, treating the smallest eigenvalues of the Wilson operator exactly within the fermionic force. We then derive the fermionic force for the overlap operator, elaborating on the problem of Dirac delta-function terms from zero crossings of eigenvalues of the Wilson operator. The crossing scheme proposed shows energy violations which are better than O(Δτ2\Delta\tau^2) and thus are comparable with the violations of the standard leapfrog algorithm over the course of a trajectory. We explicitly prove that our algorithm satisfies reversibility and area conservation. Finally, we test our algorithm on small 444^4, 646^4, and 848^4 lattices at large masses.Comment: v2 60 pages; substantial changes to all parts of the article; v3 minor revsion
    corecore