8 research outputs found

    Structure of the northwestern North Anatolian Fault Zone imaged via teleseismic scattering tomography

    Get PDF
    Information on fault zone structure is essential for our understanding of earthquake mechanics, continental deformation and seismic hazard. We use the scattered seismic wavefield to study the subsurface structure of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 İzmit and Düzce ruptures using data from an 18-month dense deployment of seismometers with a nominal station spacing of 7 km. Using the forward- and back-scattered energy that follows the direct P-wave arrival from teleseismic earthquakes, we apply a scattered wave inversion approach and are able to resolve changes in lithospheric structure on a scale of 10 km or less in an area of about 130 km by 100 km across the NAFZ. We find several crustal interfaces that are laterally incoherent beneath the surface strands of the NAFZ and evidence for contrasting crustal structures either side of the NAFZ, consistent with the presence of juxtaposed crustal blocks and ancient suture zones. Although the two strands of the NAFZ in the study region strike roughly east–west, we detect strong variations in structure both north–south, across boundaries of the major blocks, and east–west, parallel to the strike of the NAFZ. The surface expression of the two strands of the NAFZ is coincident with changes on main interfaces and interface terminations throughout the crust and into the upper mantle in the tomographic sections. We show that a dense passive network of seismometers is able to capture information from the scattered seismic wavefield and, using a tomographic approach, to resolve the fine scale structure of crust and lithospheric mantle even in geologically complex regions. Our results show that major shear zones exist beneath the NAFZ throughout the crust and into the lithospheric mantle, suggesting a strong coupling of strain at these depths

    Crustal thickness variations and isostatic disequilibrium across the North Anatolian Fault, western Turkey

    Get PDF
    We use teleseismic recordings from a dense array of seismometers straddling both strands of the North Anatolian Fault Zone to determine crustal thickness, P/S velocity ratio and sedimentary layer thickness. To do this, we implement a new grid search inversion scheme based on the use of transfer functions, removing the need for deconvolution for source normalization and therefore eliminating common problems associated with crustal-scale receiver function analysis. We achieve a good fit to the data except at several stations located in Quaternary sedimentary basins, where our two-layer crustal model is likely to be inaccurate. We find two zones of thick sedimentary material: one north of the northern fault branch, and one straddling the southern branch. The crustal thickness increases sharply north of the northern strand of the North Anatolian Fault Zone (NAFZ), where the fault nearly coincides with the trace of the Intra-Pontide Suture; the velocity ratio changes across the southern fault strand, indicating a change in basement composition. We interpret these changes to indicate that both strands of the NAFZ follow preexisting geological boundaries rather than being ideally aligned with the stress field. The thick crust north of the northern NAFZ strand is associated with low topography and so is inconsistent with simple models of isostatic equilibrium, requiring a contribution from mantle density variations, such as possible loading from underthrust Black Sea oceanic lithosphere

    Seismotectonic database of Turkey

    No full text
    Turkey is located in one of the most seismically active regions in the world. Characterizing seismic source zones in this region requires evaluation and integration of geological, geophysical, seismological and geodetical data. This first seismotectonic database for Turkey presented herein was prepared, under the framework of the National Earthquake Strategy and Action Plan-2023. The geographic information system (GIS)-based database includes maps of active faults, catalogues of instrumental and historical earthquakes, moment tensor solutions and data on crustal thickness. On the basis of these data, 18 major seismotectonic zones were delineated for Turkey and the surrounding region. The compilation and storage of the seismotectonic data sets in a digital GIS will allow analyses and systematic updates as new data accrete over time

    Active fault database of Turkey

    No full text
    corecore