528 research outputs found
Modeling the drug release from hydrogel-based matrices
In this work the behavior of hydrogel-based matrices, the most widespread systems for oral controlled release of pharmaceuticals, has been mathematically described. In addition, the calculations of the model have been validated against a rich set of experimental data obtained working with tablets made of hydroxypropyl methylcellulose (a hydrogel) and theophylline (a model drug). The model takes into account water uptake, hydrogel swelling, drug release, and polymer erosion. The model was obtained as an improvement of a previous code, describing the diffusion in concentrated systems, and obtaining the erosion front (which is a moving boundary) from the polymer mass balance (in this way, the number of fitting parameters was also reduced by one). The proposed model was found able to describe all the observed phenomena, and then it can be considered a tool with predictive capabilities, useful in design and testing of new dosage systems based on hydrogels
Recommended from our members
Prediction of the bubble point pressure for the binary mixture of ethanol and 1,1,1,2,3,3,3-heptafluoropropane from Gibbs ensemble Monte Carlo simulations using the TraPPE force field
Configurational-bias Monte Carlo simulations in the Gibbs ensemble using the TraPPE force field were carried out to predict the pressure-composition diagrams for the binary mixture of ethanol and 1,1,1,2,3,3,3-heptafluoropropane at 283.17 and 343.13 K. A new approach is introduced that allows to scale predictions at one temperature based on the differences in Gibbs free energies of transfer between experiment and simulation obtained at another temperature. A detailed analysis of the molecular structure and hydrogen bonding for this fluid mixture is provided
Influence of a knot on the strength of a polymer strand
Many experiments have been done to determine the relative strength of
different knots, and these show that the break in a knotted rope almost
invariably occurs at a point just outside the `entrance' to the knot. The
influence of knots on the properties of polymers has become of great interest,
in part because of their effect on mechanical properties. Knot theory applied
to the topology of macromolecules indicates that the simple trefoil or
`overhand' knot is likely to be present with high probability in any long
polymer strand. Fragments of DNA have been observed to contain such knots in
experiments and computer simulations. Here we use {\it ab initio} computational
methods to investigate the effect of a trefoil knot on the breaking strength of
a polymer strand. We find that the knot weakens the strand significantly, and
that, like a knotted rope, it breaks under tension at the entrance to the knot.Comment: 3 pages, 4 figure
Parallel Excluded Volume Tempering for Polymer Melts
We have developed a technique to accelerate the acquisition of effectively
uncorrelated configurations for off-lattice models of dense polymer melts which
makes use of both parallel tempering and large scale Monte Carlo moves. The
method is based upon simulating a set of systems in parallel, each of which has
a slightly different repulsive core potential, such that a thermodynamic path
from full excluded volume to an ideal gas of random walks is generated. While
each system is run with standard stochastic dynamics, resulting in an NVT
ensemble, we implement the parallel tempering through stochastic swaps between
the configurations of adjacent potentials, and the large scale Monte Carlo
moves through attempted pivot and translation moves which reach a realistic
acceptance probability as the limit of the ideal gas of random walks is
approached. Compared to pure stochastic dynamics, this results in an increased
efficiency even for a system of chains as short as monomers, however
at this chain length the large scale Monte Carlo moves were ineffective. For
even longer chains the speedup becomes substantial, as observed from
preliminary data for
The electric double layer has a life of its own
Using molecular dynamics simulations with recently developed importance
sampling methods, we show that the differential capacitance of a model ionic
liquid based double-layer capacitor exhibits an anomalous dependence on the
applied electrical potential. Such behavior is qualitatively incompatible with
standard mean-field theories of the electrical double layer, but is consistent
with observations made in experiment. The anomalous response results from
structural changes induced in the interfacial region of the ionic liquid as it
develops a charge density to screen the charge induced on the electrode
surface. These structural changes are strongly influenced by the out-of-plane
layering of the electrolyte and are multifaceted, including an abrupt local
ordering of the ions adsorbed in the plane of the electrode surface,
reorientation of molecular ions, and the spontaneous exchange of ions between
different layers of the electrolyte close to the electrode surface. The local
ordering exhibits signatures of a first-order phase transition, which would
indicate a singular charge-density transition in a macroscopic limit
Dispersion and release of embelin from electrospun biodegradable, polymeric, membranes
In this work, microfiber meshes containing embelin, a poorly water-soluble bioactive agent, were prepared by solubilizing embelin in a biodegradable and biocompatible polymer matrix of poly(Δ-caprolactone) (PCL). Plain or drug-loaded, highly porous, fibrous membranes with a high area-to-volume ratio were obtained by electrospinning. Non-woven microfibrous meshes were formed by uniform bead-free fibers with a mean diameter of 1.2âÎŒm. Non-porous films were obtained by solution casting, and were used for comparison. The drug-loading content of the prepared systems was appropriate for topical applications. The thermal properties revealed that the crystallinity of embelin significantly decreased, the drug having almost completely dissolved in the PCL fibers. The in situ bioavailability of embelin, an antimycotic agent, is an important aspect to consider in topical drug applications. The drug-loaded systems presented different contact areas with the biological environment. When comparing the ability to expose embelin with the biological environment of the prepared systems, drug-loaded fibrous scaffolds showed a higher bioavailability of the bioactive agent because of an increase by 86% in the area-to-volume ratio, providing an effective area per unit mass that was 5.8-fold higher than that of the film. For the meshes, 90% embelin release was observed after 12h of exposure to phosphate-buffered saline, whereas for the films a comparable level of release occurred only after 72h.Fil: Cortez Tornello, Pablo Roberto. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Mar del Plata. Instituto de InvestigaciĂłn En Ciencia y TecnologĂa de Materiales (i); Argentina. Universidad Nacional de San Juan. Facultad de IngenierĂa. Instituto de BiotecnologĂa; ArgentinaFil: Feresin, Gabriela Egly. Universidad Nacional de San Juan. Facultad de IngenierĂa. Instituto de BiotecnologĂa; ArgentinaFil: Tapia, Alejandro. Universidad Nacional de San Juan. Facultad de IngenierĂa. Instituto de BiotecnologĂa; ArgentinaFil: Veiga, Itiara G.. Universidade Estadual de Campinas; BrasilFil: Moraes, Ăngela M.. Universidade Estadual de Campinas; BrasilFil: Abraham, Gustavo Abel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Mar del Plata. Instituto de InvestigaciĂłn En Ciencia y TecnologĂa de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de IngenierĂa; ArgentinaFil: Cuadrado, Teresita Raquel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Mar del Plata. Instituto de InvestigaciĂłn En Ciencia y TecnologĂa de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de IngenierĂa; Argentin
Elucidation on the Effect of Operating Temperature to the Transport Properties of Polymeric Membrane Using Molecular Simulation Tool
Existing reports of gas transport properties within polymeric membrane as a direct consequence of operating temperature are in a small number and have arrived in diverging conclusion. The scarcity has been associated to challenges in fabricating defect free membranes and empirical investigations of gas permeation performance at the laboratory scale that are often time consuming and costly. Molecular simulation has been proposed as a feasible alternative of experimentally studied materials to provide insights into gas transport characteristic. Hence, a sequence of molecular modelling procedures has been proposed to simulate polymeric membranes at varying operating temperatures in order to elucidate its effect to gas transport behaviour. The simulation model has been validated with experimental data through satisfactory agreement. Solubility has shown a decrement in value when increased in temperature (an average factor of 1.78), while the opposite has been observed for gas diffusivity (an average factor of 1.32) when the temperature is increased from 298.15Ă K to 323.15Ă K. In addition, it is found that permeability decreases by 1.36 times as the temperature is increased
A Self-Organizing Algorithm for Modeling Protein Loops
Protein loops, the flexible short segments connecting two stable secondary
structural units in proteins, play a critical role in protein structure and
function. Constructing chemically sensible conformations of protein loops that
seamlessly bridge the gap between the anchor points without introducing any
steric collisions remains an open challenge. A variety of algorithms have been
developed to tackle the loop closure problem, ranging from inverse kinematics to
knowledge-based approaches that utilize pre-existing fragments extracted from
known protein structures. However, many of these approaches focus on the
generation of conformations that mainly satisfy the fixed end point condition,
leaving the steric constraints to be resolved in subsequent post-processing
steps. In the present work, we describe a simple solution that simultaneously
satisfies not only the end point and steric conditions, but also chirality and
planarity constraints. Starting from random initial atomic coordinates, each
individual conformation is generated independently by using a simple alternating
scheme of pairwise distance adjustments of randomly chosen atoms, followed by
fast geometric matching of the conformationally rigid components of the
constituent amino acids. The method is conceptually simple, numerically stable
and computationally efficient. Very importantly, additional constraints, such as
those derived from NMR experiments, hydrogen bonds or salt bridges, can be
incorporated into the algorithm in a straightforward and inexpensive way, making
the method ideal for solving more complex multi-loop problems. The remarkable
performance and robustness of the algorithm are demonstrated on a set of protein
loops of length 4, 8, and 12 that have been used in previous studies
- âŠ