1,073 research outputs found

    Polar Field Reversal Observations with Hinode

    Full text link
    We have been monitoring yearly variation in the Sun's polar magnetic fields with the Solar Optical Telescope aboard {\it Hinode} to record their evolution and expected reversal near the solar maximum. All magnetic patches in the magnetic flux maps are automatically identified to obtain the number density and magnetic flux density as a function of th total magnetic flux per patch. The detected magnetic flux per patch ranges over four orders of magnitude (101510^{15} -- 102010^{20} Mx). The higher end of the magnetic flux in the polar regions is about one order of magnitude larger than that of the quiet Sun, and nearly that of pores. Almost all large patches (≥1018 \geq 10^{18} Mx) have the same polarity, while smaller patches have a fair balance of both polarities. The polarity of the polar region as a whole is consequently determined only by the large magnetic concentrations. A clear decrease in the net flux of the polar region is detected in the slow rising phase of the current solar cycle. The decrease is more rapid in the north polar region than in the south. The decrease in the net flux is caused by a decrease in the number and size of the large flux concentrations as well as the appearance of patches with opposite polarity at lower latitudes. In contrast, we do not see temporal change in the magnetic flux associated with the smaller patches (<1018 < 10^{18} Mx) and that of the horizontal magnetic fields during the years 2008--2012.Comment: 21 pages, 7 figures. Accepted for publication in Ap

    A Plasma {\beta} Transition Within a Propagating Flux Rope

    Full text link
    We present a 2.5D MHD simulation of a magnetic flux rope (FR) propagating in the heliosphere and investigate the cause of the observed sharp plasma beta transition. Specifically, we consider a strong internal magnetic field and an explosive fast start, such that the plasma beta is significantly lower in the FR than the sheath region that is formed ahead. This leads to an unusual FR morphology in the first stage of propagation, while the more traditional view (e.g. from space weather simulations like Enlil) of a `pancake' shaped FR is observed as it approaches 1 AU. We investigate how an equipartition line, defined by a magnetic Weber number, surrounding a core region of a propagating FR can demarcate a boundary layer where there is a sharp transition in the plasma beta. The substructure affects the distribution of toroidal flux, with the majority of the flux remaining in a small core region which maintains a quasi-cylindrical structure. Quantitatively, we investigate a locus of points where the kinetic energy density of the relative inflow field is equal to the energy density of the transverse magnetic field (i.e. effective tension force). The simulation provides compelling evidence that at all heliocentric distances the distribution of toroidal magnetic flux away from the FR axis is not linear; with 80% of the toroidal flux occurring within 40% of the distance from the FR axis. Thus our simulation displays evidence that the competing ideas of a pancaking structure observed remotely can coexist with a quasi-cylindrical magnetic structure seen in situ.Comment: 11 pages of text + 6 figures. Accepted to ApJ on 16 Oct 201

    A Symmetric Generalization of Linear B\"acklund Transformation associated with the Hirota Bilinear Difference Equation

    Full text link
    The Hirota bilinear difference equation is generalized to discrete space of arbitrary dimension. Solutions to the nonlinear difference equations can be obtained via B\"acklund transformation of the corresponding linear problems.Comment: Latex, 12 pages, 1 figur

    Numerical Investigation of a Coronal Mass Ejection from an Anemone Active Region: Reconnection and Deflection of the 2005 August 22 Eruption

    Full text link
    We present a numerical investigation of the coronal evolution of a coronal mass ejection (CME) on 2005 August 22 using a 3-D thermodynamics magnetohydrodynamic model, the SWMF. The source region of the eruption was anemone active region (AR) 10798, which emerged inside a coronal hole. We validate our modeled corona by producing synthetic extreme ultraviolet (EUV) images, which we compare to EIT images. We initiate the CME with an out-of-equilibrium flux rope with an orientation and chirality chosen in agreement with observations of a H-alpha filament. During the eruption, one footpoint of the flux rope reconnects with streamer magnetic field lines and with open field lines from the adjacent coronal hole. It yields an eruption which has a mix of closed and open twisted field lines due to interchange reconnection and only one footpoint line-tied to the source region. Even with the large-scale reconnection, we find no evidence of strong rotation of the CME as it propagates. We study the CME deflection and find that the effect of the Lorentz force is a deflection of the CME by about 3 deg/Rsun towards the East during the first 30 minutes of the propagation. We also produce coronagraphic and EUV images of the CME, which we compare with real images, identifying a dimming region associated with the reconnection process. We discuss the implication of our results for the arrival at Earth of CMEs originating from the limb and for models to explain the presence of open field lines in magnetic clouds.Comment: 14 pages, 8 Figures, accepted to Astrophysical Journa

    KLF11 and association study in Japanese

    Get PDF
    Aims: Krüppel-like factor 11 (KLF11) is a transcriptional factor of the zinc finger domain family that regulates the expression of insulin. In North European populations, its common functional variant Q62R (rs35927125) is a strong genetic factor for Type 2 diabetes (P = 0.00033, odds ratio for G allele = 1.29, 95% CI 1.12–1.49). We examined the contribution of KLF11 variants to the susceptibility to Type 2 diabetes in a Japanese population. Methods: By re-sequencing Japanese individuals (n = 24, partly 96), we screened all four exons, exon/intron boundaries and flanking regions of KLF11. Verified single nucleotide polymorphisms (SNPs) were genotyped in 731 initial samples (369 control and 362 case subjects). Subsequently, we tested for association in 1087 samples (524 control and 563 case subjects), which were collected in different districts of Japan from the initial samples. Results: We identified eight variants, including a novel A/C variant on intron 3, but no mis-sense mutations. In an association study, we failed to find any significant result of SNPs (minor allele frequency 8.2–46.2%) after correcting for multiple testing. Similarly, no haplotypes were associated with Type 2 diabetes. It is notable that the G allele in rs35927125 was completely absent in 1818 Japanese individuals. Conclusions: Genetic variants in KLF11 are unlikely to have a major effect of Type 2 diabetes in the Japanese population, although they were significantly associated in North European populations. These observations might help to determine the role of KLF11 variants in Type 2 diabetes in different populations
    • …
    corecore