59 research outputs found

    The influence of the processes of digitalization of the economy on the activities of non-financial institutions

    Get PDF
    The driver of the modern global economy is digital technologies under the influence of which not only new kinds of professions, goods and services are formed, but also challenges for enterprises and the organization of various fields of activity. Digitalization affected the IT-sphere, the activities of financial organizations, production, marketing, healthcare. In the Russian Federation the development of digital technologies in various fields of activity is of great importance, which is reflected in official documents, targeted government programs, business analysts and business practices. All this actualizes the study of the problem of management transformation in non-financial organizations under the influence of the spread of digital technologies.The article examines the strategic challenges facing non-financial organizations of Russia in the digital economy. In the course of solving the tasks set, the formation and development of the digital economy, its essence and content, as well as the prospects for its development in our country, were studied; the program documents and directions of the state program for the development of the digital economy are analyzed. It is proved that involvement in the digitalization processes of not only financial but also non-financial organizations carries a huge potential in terms of improving the value environment of Russian business, since it makes transactions in the shadow economy, corruption schemes, etc. transparent. The authors have proved that the revival of traditional values of Russian entrepreneurship on a new modern basis will increase the level of trust in society, will promote the development of innovations in industry, energy, agro-industrial complex, education and sustainable development of the economy as a whole. The authors structured the challenges of the digital economy for non-financial organizations in our country and formulated proposals for improving the ecosystem of the digital economy

    Correction to: A pair of gametologous genes provides further insights into avian comparative cytogenomics

    Get PDF
    Biologia https://doi.org/10.1007/s11756-023-01395-6 The original article has been updated to reflect added changes in the list of references. The original article has been corrected

    A pair of gametologous genes provides further insights into avian comparative cytogenomics

    Get PDF
    Exploration of avian gametologous genes, i.e., homologous genes located on both the Z and W chromosomes, provides a crucial information about the underlying mechanism pertaining to the evolution of these chromosomes. The domestic chicken (Gallus gallus (Linnaeus 1758); GGA) traditionally serves as the primary reference subject of these comparative cytogenomic studies. Using bioinformatic, molecular (overgo BAC library scanning), and cytogenetic (BAC-based FISH) techniques, we have investigated in detail a pair of UBE2R2/UBE2R2L gametologs. By screening a gridded genomic jungle fowl BAC library, CHORI-261, with a short labeled UBE2R2L gene fragment called overgo probe, we detected seven specific clones. For three of them, CH261-019I23, CH261-105E16, and CH261-114G22, we identified their precise cytogenetic location on the Gallus gallus W chromosome (GGAW). They also co-localized with the UBAP2L2 gene on the, as was shown previously, along with the CH261-053P09 BAC clone also containing the GGAW-specific UBE2R2L DNA sequence. The fine mapping of the UBE2R2/UBE2R2L homologs in the chicken genome also shed the light on comparative cytogenetic aspects in birds. Our findings provided further evidence that bird genomes moderately changed only during evolution and are suitable for successful use of interspecies hybridization using both overgo-based BAC library screen and BAC-based FISH

    PLAGUE INFECTION SIMULATING IN CASE OF INOCULATION WITH AVIRULENT YERSINIA PESTIS STRAINS

    Get PDF
    Biological method of investigation is specified for the laboratory diagnostics of plague. Mastering of this method by the trainees within the frames of further vocational education is associated with the use of avirulent Yersinia pestis strains and vaccine Y. pestis strain EV line, which while providing safety does not allow for typical pathomorphological pattern on biomodels, as well as for isolation of microorganisms from internal organs. Objective of the study is to select avirulent Yersinia pestis strains and to conduct comparative analysis of the simulation techniques for plague on biomodels. Materials and methods. Utilized were Y. pestis strains. Virulence was evaluated both, in vitro (polymerase chain reaction) and in vivo (LD50 for white mice). Results and conclusions. Set forward have been avirulent Y. pestis strains, prospective in terms of mastering biological method of laboratory diagnostics of plague, and means of their application for simulating plague in biomodels. The designed approach allows for exercising biological methods of plague investigation to the fullest extent, enhancing biological safety of practical studies and reducing the time line for isolation and accumulation of pure bacterial culture

    Intraspecific Differentiation of <i>Francisella tularensis</i> Strains Using Multilocus Real-Time Polymerase Chain Reaction

    Get PDF
    The aim of the study was to develop a method for intraspecific differentiation of the tularemia microbe: subspecies tularensis (subpopulations AI and AII), holarctica (biovars japonica, EryS/R), mediasiatica, and novicida using multilocus real-time PCR. Materials and methods. We used 48 strains of F. tularensis of various subspecies, biovars, and subpopulations. Intraspecific appurtenance of the strains was carried out on the basis of the analysis of the RD-1 region variability applying PCR, the sdhA gene by Sanger fragment sequencing and by the disk diffusion method using disks with erythromycin. The selection of primers and probes was performed using the software available at www.genscript.com and GeneRunner 6.5.52. Sequence homology was assessed using the BLAST algorithm and the GenBank NCBI database. Results and discussion. New data on the structure and occurrence of the differentiation regions RD-8, RD-12, RD-28 of FTT1122c gene and its homologous sequences in strains of tularemia microbe of various subspecies have been obtained. Novel RDhm 346 bp in size, characteristic of strains of the subsp. mediasiatica, holarctica, which is deleted in subsp. tularensis and absent in subsp. novicida has been detected. Based on the detection of the FTT1670, FTT1122с, FTT1067, FTW_2084 loci, a multilocus real-time PCR has been developed – “F. tularensis 4c”, providing for identification of all subspecies of the tularemia microbe, separately for the biovar japonica of the Holarctic subspecies and subpopulations AI, AII of the subspecies tularensis. The PCR specificity was confirmed in the study of strains of tularemia microbe from the fund of the “State Collection of Pathogenic Bacteria” at the premises of the Russian Reserarch Anti-Plague Institute “Microbe”. The results obtained expand the concept of intraspecific genetic heterogeneity of tularemia microbe and possibilities of identifying the causative agent of tularemia using molecular-genetic methods. They are important for understanding the processes of adaptation of the pathogen to circulation in the host organism and environmental objects, the course of evolution and formation of new species of Francisella

    Fungal Planet description sheets: 868-950

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetomella pseudocircinoseta and Coniella pseudodiospyri on Eucalyptus microcorys leaves, Cladophialophora eucalypti, Teratosphaeria dunnii and Vermiculariopsiella dunnii on Eucalyptus dunnii leaves, Cylindrium grande and Hypsotheca eucalyptorum on Eucalyptus grandis leaves, Elsinoe salignae on Eucalyptus saligna leaves, Marasmius lebeliae on litter of regenerating subtropical rainforest, Phialoseptomonium eucalypti (incl. Phialoseptomonium gen. nov.) on Eucalyptus grandis × camaldulensis leaves, Phlogicylindrium pawpawense on Eucalyptus tereticornis leaves, Phyllosticta longicauda as an endophyte from healthy Eustrephus latifolius leaves, Pseudosydowia eucalyptorum on Eucalyptus sp. leaves, Saitozyma wallum on Banksia aemula leaves, Teratosphaeria henryi on Corymbia henryi leaves. Brazil, Aspergillus bezerrae, Backusella azygospora, Mariannaea terricola and Talaromyces pernambucoensis from soil, Calonectria matogrossensis on Eucalyptus urophylla leaves, Calvatia brasiliensis on soil, Carcinomyces nordestinensis on Bromelia antiacantha leaves, Dendryphiella stromaticola on small branches of an unidentified plant, Nigrospora brasiliensis on Nopalea cochenillifera leaves, Penicillium alagoense as a leaf endophyte on a Miconia sp., Podosordaria nigrobrunnea on dung, Spegazzinia bromeliacearum as a leaf endophyte on Tilandsia catimbauensis, Xylobolus brasiliensis on decaying wood. Bulgaria, Kazachstania molopis from the gut of the beetle Molops piceus. Croatia, Mollisia endocrystallina from a fallen decorticated Picea abies tree trunk. Ecuador, Hygrocybe rodomaculata on soil. Hungary, Alfoldia vorosii (incl.Alfoldia gen. nov.) from Juniperus communis roots, Kiskunsagia ubrizsyi (incl. Kiskunsagia gen. nov.) from Fumana procumbens roots. India, Aureobasidium tremulum as laboratory contaminant, Leucosporidium himalayensis and Naganishia indica from windblown dust on glaciers. Italy, Neodevriesia cycadicola on Cycas sp. leaves, Pseudocercospora pseudomyrticola on Myrtus communis leaves, Ramularia pistaciae on Pistacia lentiscus leaves, Neognomoniopsis quercina (incl. Neognomoniopsis gen. nov.) on Quercus ilex leaves. Japan, Diaporthe fructicola on Passiflora edulis × P. edulis f. flavicarpa fruit, Entoloma nipponicum on leaf litter in a mixed Cryptomeria japonica and Acer spp. forest. Macedonia, Astraeus macedonicus on soil. Malaysia, Fusicladium eucalyptigenum on Eucalyptus sp. twigs, Neoacrodontiella eucalypti (incl. Neoacrodontiella gen. nov.) on Eucalyptus urophylla leaves. Mozambique, Meliola gorongosensis on dead Philenoptera violacea leaflets. Nepal, Coniochaeta dendrobiicola from Dendriobium lognicornu roots. New Zealand, Neodevriesia sexualis and Thozetella neonivea on Archontophoenix cunninghamiana leaves. Norway, Calophoma sandfjordenica from a piece of board on a rocky shoreline, Clavaria parvispora on soil, Didymella finnmarkica from a piece of Pinus sylvestris driftwood. Poland, Sugiyamaella trypani from soil. Portugal, Colletotrichum feijoicola from Acca sellowiana. Russia, Crepidotus tobolensis on Populus tremula debris, Entoloma ekaterinae, Entoloma erhardii and Suillus gastroflavus on soil, Nakazawaea ambrosiae from the galleries of Ips typographus under the bark of Picea abies. Slovenia, Pluteus ludwigii on twigs of broadleaved trees. South Africa, Anungitiomyces stellenboschiensis (incl. Anungitiomyces gen. nov.) and Niesslia stellenboschiana on Eucalyptus sp. leaves, Beltraniella pseudoportoricensis on Podocarpus falcatus leaf litter, Corynespora encephalarti on Encephalartos sp. leaves, Cytospora pavettae on Pavetta revoluta leaves, Helminthosporium erythrinicola on Erythrina humeana leaves, Helminthosporium syzygii on a Syzygium sp. barkcanker, Libertasomyces aloeticus on Aloe sp. leaves, Penicillium lunae from Musa sp. fruit, Phyllosticta lauridiae on Lauridia tetragona leaves, Pseudotruncatella bolusanthi (incl. Pseudotruncatellaceae fam. nov.) and Dactylella bolusanthi on Bolusanthus speciosus leaves. Spain, Apenidiella foetida on submerged plant debris, Inocybe grammatoides on Quercus ilex subsp. ilex forest humus, Ossicaulis salomii on soil, Phialemonium guarroi from soil. Thailand, Pantospora chromolaenae on Chromolaena odorata leaves. Ukraine, Cadophora helianthi from Helianthus annuus stems. USA, Boletus pseudopinophilus on soil under slash pine, Botryotrichum foricae, Penicillium americanum and Penicillium minnesotense from air. Vietnam, Lycoperdon vietnamense on soil. Morphological and culture characteristics are supported by DNA barcodes

    Fungal planet description sheets: 868–950

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetomella pseudocircinoseta and Coniella pseudodiospyri on Eucalyptus microcorys leaves, Cladophialophora eucalypti, Teratosphaeria dunnii and Vermiculariopsiella dunnii on Eucalyptus dunnii leaves, Cylindrium grande and Hypsotheca eucalyptorum on Eucalyptus grandis leaves, Elsinoe salignae on Eucalyptus saligna leaves, Marasmius lebeliae on litter of regenerating subtropical rainforest, Phialoseptomonium eucalypti (incl. Phialoseptomonium gen. nov.) on Eucalyptus grandis × camaldulensis leaves, Phlogicylindrium pawpawense on Eucalyptus tereticornis leaves, Phyllosticta longicauda as an endophyte from healthy Eustrephus latifolius leaves, Pseudosydowia eucalyptorum on Eucalyptus sp. leaves, Saitozyma wallum on Banksia aemula leaves, Teratosphaeria henryi on Corymbia henryi leaves. Brazil, Aspergillus bezerrae, Backusella azygospora, Mariannaea terricola and Talaromyces pernambucoensis from soil, Calonectria matogrossensis on Eucalyptus urophylla leaves, Calvatia brasiliensis on soil, Carcinomyces nordestinensis on Bromelia antiacantha leaves, Dendryphiella stromaticola on small branches of an unidentified plant, Nigrospora brasiliensis on Nopalea cochenillifera leaves, Penicillium alagoense as a leaf endophyte on a Miconia sp., Podosordaria nigrobrunnea on dung, Spegazzinia bromeliacearum as a leaf endophyte on Tilandsia catimbauensis, Xylobolus brasiliensis on decaying wood. Bulgaria, Kazachstania molopis from the gut of the beetle Molops piceus. Croatia, Mollisia endocrystallina from a fallen decorticated Picea abies tree trunk. Ecuador, Hygrocybe rodomaculata on soil. Hungary, Alfoldia vorosii (incl. Alfoldia gen. nov.) from Juniperus communis roots, Kiskunsagia ubrizsyi (incl. Kiskunsagia gen. nov.) from Fumana procumbens roots. India, Aureobasidium tremulum as laboratory contaminant, Leucosporidium himalayensis and Naganishia indica from windblown dust on glaciers. Italy, Neodevriesia cycadicola on Cycas sp. leaves, Pseudocercospora pseudomyrticola on Myrtus communis leaves, Ramularia pistaciae on Pistacia lentiscus leaves, Neognomoniopsis quercina (incl. Neognomoniopsis gen. nov.) on Quercus ilex leaves. Japan, Diaporthe fructicola on Passiflora edulis × P. edulis f. flavicarpa fruit, Entoloma nipponicum on leaf litter in a mixed Cryptomeria japonica and Acer spp. forest. Macedonia, Astraeus macedonicus on soil. Malaysia, Fusicladium eucalyptigenum on Eucalyptus sp. twigs, Neoacrodontiella eucalypti (incl. Neoacrodontiella gen. nov.) on Eucalyptus urophylla leaves. Mozambique, Meliola gorongosensis on dead Philenoptera violacea leaflets. Nepal, Coniochaeta dendrobiicola from Dendriobium lognicornu roots. New Zealand, Neodevriesia sexualis and Thozetella neonivea on Archontophoenix cunninghamiana leaves. Norway, Calophoma sandfjordenica from a piece of board on a rocky shoreline, Clavaria parvispora on soil, Didymella finnmarkica from a piece of Pinus sylvestris driftwood. Poland, Sugiyamaella trypani from soil. Portugal, Colletotrichum feijoicola from Acca sellowiana. Russia, Crepidotus tobolensis on Populus tremula debris, Entoloma ekaterinae, Entoloma erhardii and Suillus gastroflavus on soil, Nakazawaea ambrosiae from the galleries of Ips typographus under the bark of Picea abies. Slovenia, Pluteus ludwigii on twigs of broadleaved trees. South Africa, Anungitiomyces stellenboschiensis (incl. Anungitiomyces gen. nov.) and Niesslia stellenboschiana on Eucalyptus sp. leaves, Beltraniella pseudoportoricensis on Podocarpus falcatus leaf litter, Corynespora encephalarti on Encephalartos sp. leaves, Cytospora pavettae on Pavetta revoluta leaves, Helminthosporium erythrinicola on Erythrina humeana leaves, Helminthosporium syzygii on a Syzygium sp. bark canker, Libertasomyces aloeticus on Aloe sp. leaves, Penicillium lunae from Musa sp. fruit, Phyllosticta lauridiae on Lauridia tetragona leaves, Pseudotruncatella bolusanthi (incl. Pseudotruncatellaceae fam. nov.) and Dactylella bolusanthi on Bolusanthus speciosus leaves. Spain, Apenidiella foetida on submerged plant debris, Inocybe grammatoides on Quercus ilex subsp. ilex forest humus, Ossicaulis salomii on soil, Phialemonium guarroi from soil. Thailand, Pantospora chromolaenae on Chromolaena odorata leaves. Ukraine, Cadophora helianthi from Helianthus annuus stems. USA, Boletus pseudopinophilus on soil under slash pine, Botryotrichum foricae, Penicillium americanum and Penicillium minnesotense from air. Vietnam, Lycoperdon vietnamense on soil. Morphological and culture characteristics are supported by DNA barcodes

    The economic theory of organizations in the structure of modern economic theory

    Get PDF
    The article reveals the features of the neoclassical economic theory of organizations and the institutional economic theory of organizations; the influence of the philosophy of modern and postmodern on the neoclassical and institutional economic theory of organizations is established, and the place and role of the economic theory of organizations in the structure of modern economic theory is determined

    Mycobiota of artificial pine phytocoenosis from Magadan town surroundings

    Full text link
    147 species of macromycetes are noted for artificial stands of the common pine in the surroundings of Magadan town. The trophic structure of two pine phytocenosis are given. Specific species for two-needle fascicle pines are noted — which are Suillus bovinus, S. variegatus and Hygrophorus hypotejus, brought during planting and well-established beyond the bounds of areal. Mycorrhizal fungi and decomposers of the pine wood and needles were revealed

    Influence of institutional transformation in agricultural sector of Russia on small businesses (organizations)

    Get PDF
    The article examines a set of agrarian policy measures that contribute the formation of institutional conditions for the development of small enterprises in the agrarian sector of the Russian economy. The authors identify the regulatory, financial and administrative tools of state regulation of the agricultural sector in Russia and analyze the results of the impact of institutional transformations on microeconomic agents of small and medium businesses
    corecore