279 research outputs found

    Controversies in Surgical Staging of Endometrial Cancer

    Get PDF
    Endometrial cancer is the most common gynaecological malignancy and its incidence is increasing. In 1998, international federation of gynaecologists and obstetricians (FIGO) required a change from clinical to surgical staging in endometrial cancer, introducing pelvic and paraaortic lymphadenectomy. This staging requirement raised controversies around the importance of determining nodal status and impact of lymphadenectomy on outcomes. There is agreement about the prognostic value of lymphadenectomy, but its extent, therapeutic value, and benefits in terms of survival are still matter of debate, especially in early stages. Accurate preoperative risk stratification can guide to the appropriate type of surgery by selecting patients who benefit of lymphadenectomy. However, available preoperative and intraoperative investigations are not highly accurate methods to detect lymph nodes and a complete surgical staging remains the most precise method to evaluate extrauterine spread of the disease. Laparotomy has always been considered the standard approach for endometrial cancer surgical staging. Traditional and robotic-assisted laparoscopic techniques seem to provide equivalent results in terms of disease-free survival and overall survival compared to laparotomy. These minimally invasive approaches demonstrated additional benefits as shorter hospital stay, less use of pain killers, lower rate of complications and improved quality of life

    Giant Sigmoid Diverticulum: A Rare Presentation of a Common Pathology

    Get PDF
    Although colonic diverticulum is a common disease, affecting about 35% of patients above the age of 60, giant sigmoid diverticulum is an uncommon variant of which only relatively few cases have been described in the literature. We report on our experience with a patient affected by giant sigmoid diverticulum who was treated with diverticulectomy. Resection of the diverticulum is a safe surgical procedure, provided that the colon section close to the lesion presents no sign of flogosis or diverticula; in addition, recurrences are not reported after 6-year follow-up

    Classifying A-field and B-field configurations in the presence of D-branes

    Full text link
    We "solve" the Freed-Witten anomaly equation, i.e., we find a geometrical classification of the B-field and A-field configurations in the presence of D-branes that are anomaly-free. The mathematical setting being provided by the geometry of gerbes, we find that the allowed configurations are jointly described by a coset of a certain hypercohomology group. We then describe in detail various cases that arise according to such classification. As is well-known, only under suitable hypotheses the A-field turns out to be a connection on a canonical gauge bundle. However, even in these cases, there is a residual freedom in the choice of the bundle, naturally arising from the hypercohomological description. For a B-field which is flat on a D-brane, fractional or irrational charges of subbranes naturally appear; for a suitable gauge choice, they can be seen as arising from "gauge bundles with not integral Chern class": we give a precise geometric interpretation of these objects.Comment: 28 pages, no figure

    Transvaginal ultrasound assessment of myometrial and cervical stroma invasion in women with endometrial cancer -interobserver reproducibility among ultrasound experts and gynaecologists

    Get PDF
    To assess interobserver reproducibility among ultrasound experts and gynaecologists in the prediction of deep myometrial- and cervical stroma invasion by transvaginal ultrasound in women with endometrial cancer

    Strategies to diagnose ovarian cancer: new evidence from phase 3 of the multicentre international IOTA study

    Get PDF
    Background: To compare different ultrasound-based international ovarian tumour analysis (IOTA) strategies and risk of malignancy index (RMI) for ovarian cancer diagnosis using a meta-analysis approach of centre-specific data from IOTA3. Methods: This prospective multicentre diagnostic accuracy study included 2403 patients with 1423 benign and 980 malignant adnexal masses from 2009 until 2012. All patients underwent standardised transvaginal ultrasonography. Test performance of RMI, subjective assessment (SA) of ultrasound findings, two IOTA risk models (LR1 and LR2), and strategies involving combinations of IOTA simple rules (SRs), simple descriptors (SDs) and LR2 with and without SA was estimated using a meta-analysis approach. Reference standard was histology after surgery. Results: The areas under the receiver operator characteristic curves of LR1, LR2, SA and RMI were 0.930 (0.917–0.942), 0.918 (0.905–0.930), 0.914 (0.886–0.936) and 0.875 (0.853–0.894). Diagnostic one-step and two-step strategies using LR1, LR2, SR and SD achieved summary estimates for sensitivity 90–96%, specificity 74–79% and diagnostic odds ratio (DOR) 32.8–50.5. Adding SA when IOTA methods yielded equivocal results improved performance (DOR 57.6–75.7). Risk of Malignancy Index had sensitivity 67%, specificity 91% and DOR 17.5. Conclusions: This study shows all IOTA strategies had excellent diagnostic performance in comparison with RMI. The IOTA strategy chosen may be determined by clinical preference

    Accurate path integration in continuous attractor network models of grid cells

    Get PDF
    Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of ~10–100 meters and ~1–10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other

    Modeling Boundary Vector Cell Firing Given Optic Flow as a Cue

    Get PDF
    Boundary vector cells in entorhinal cortex fire when a rat is in locations at a specific distance from walls of an environment. This firing may originate from memory of the barrier location combined with path integration, or the firing may depend upon the apparent visual input image stream. The modeling work presented here investigates the role of optic flow, the apparent change of patterns of light on the retina, as input for boundary vector cell firing. Analytical spherical flow is used by a template model to segment walls from the ground, to estimate self-motion and the distance and allocentric direction of walls, and to detect drop-offs. Distance estimates of walls in an empty circular or rectangular box have a mean error of less than or equal to two centimeters. Integrating these estimates into a visually driven boundary vector cell model leads to the firing patterns characteristic for boundary vector cells. This suggests that optic flow can influence the firing of boundary vector cells
    corecore