116 research outputs found

    Bouncing inflation in nonlinear R2+R4R^2+R^4 gravitational model

    Get PDF
    We study a gravitational model with curvature-squared R2R^2 and curvature-quartic R4R^4 nonlinearities. The effective scalar degree of freedom Ο•\phi (scalaron) has a multi-valued potential U(Ο•)U(\phi) consisting of a number of branches. These branches are fitted with each other in the branching and monotonic points. In the case of four-dimensional space-time, we show that the monotonic points are penetrable for scalaron while in the vicinity of the branching points scalaron has the bouncing behavior and cannot cross these points. Moreover, there are branching points where scalaron bounces an infinite number of times with decreasing amplitude and the Universe asymptotically approaches the de Sitter stage. Such accelerating behavior we call bouncing inflation. For this accelerating expansion there is no need for original potential U(Ο•)U(\phi) to have a minimum or to check the slow-roll conditions. A necessary condition for such inflation is the existence of the branching points. This is a new type of inflation. We show that bouncing inflation takes place both in the Einstein and Brans-Dicke frames.Comment: RevTex 13 pages, 13 figures, a few comments and references adde

    ΠŸΠΎΡˆΡƒΠΊ Π½ΠΎΠ²ΠΈΡ… Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ Ρƒ ряду ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… 3-ΠΌΠ΅Ρ€ΠΊΠ°ΠΏΡ‚ΠΎ-4-Π°ΠΌΡ–Π½ΠΎ-5-Ρ†ΠΈΠΊ- логСксил-1,2,4-Ρ‚Ρ€ΠΈΠ°Π·ΠΎΠ»Ρƒ(4Π½)

    Get PDF
    Synthesis of the series of new 4-phenyl-5-cyclohexyl-1,2,4-triazole(4H)-3-yl thioacetanilides is described. The key intermediate – 4-phenyl-5-cyclohexyl-3-mercapto-1,2,4-triazole(4H) has been synthesized started from cyclohexane carboxylic acid through its methyl ester, then hydrazide and the corresponding potassium 3-cyclohexyl dithiocarbazate after cyclisation with hydrazine hydrate. The end products 6a-u have been obtained by alkylation of the key intermediate 5 with chloroacetic acid anilides in the presence of basic catalysts. The purity of the compounds synthesized has been monitored by TLC. The structure of compounds synthesized has been proven by elemental analysis data and NMR spectra. In NMR-spectra the result of alkylation has been proven by disappearence of the chemical shift of the mercaptogroup. All compounds – both intermediate 5 and end products 6a-u contain signals of the cyclohexane system protons as two multiplets near 2.80 ppm (CH) and at 1.92-1.11 ppm (CH2)5; 4-aminogroup protons as a singlet signal at 5.92-5.87 ppm. The preliminary prediction of the possible pharmacological activity by computer prognosis (PASS programme) has been carried out. Among activities, which are the most probable for some of the substances synthesized, are ligase inhibitor, interferon agonist, antihypertensive, thyroid hormone antagonist, sedative, antiviral (Pa = 0.554-0.729). Due to prognosis and analysis of logical data the substances synthesized will be examined as possible antiviral agents.Описан синтСз сСрии Π½ΠΎΠ²Ρ‹Ρ… 4-Ρ„Π΅Π½ΠΈΠ»-5-циклогСксил-1,2,4-Ρ‚Ρ€ΠΈΠ°Π·ΠΎΠ»(4Н)-3-ΠΈΠ» Ρ‚ΠΈΠΎΠ°Ρ†Π΅Ρ‚Π°Π½ΠΈΠ»ΠΈΠ΄ΠΎΠ². ΠšΠ»ΡŽΡ‡Π΅Π²ΠΎΠΉ ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄ΠΈΠ°Ρ‚ – 4-Ρ„Π΅Π½ΠΈΠ»-5-циклогСксил-3-ΠΌΠ΅Ρ€ΠΊΠ°ΠΏΡ‚ΠΎ-1,2,4-Ρ‚Ρ€ΠΈΠ°Π·ΠΎΠ»(4H) синтСзирован, исходя ΠΈΠ· циклогСксанкарбоновой кислоты Ρ‡Π΅Ρ€Π΅Π· Π΅Π΅ ΠΌΠ΅Ρ‚ΠΈΠ»ΠΎΠ²Ρ‹ΠΉ эфир, Π΄Π°Π»Π΅Π΅ – ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ Π³ΠΈΠ΄Ρ€Π°Π·ΠΈΠ΄ ΠΈ ΠΊΠ°Π»ΠΈΠΉ 3-циклогСксилдитиокарбазат послС Ρ†ΠΈΠΊΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ с Π³ΠΈΠ΄Ρ€Π°Π·ΠΈΠ½ Π³ΠΈΠ΄Ρ€Π°Ρ‚ΠΎΠΌ. ΠšΠΎΠ½Π΅Ρ‡Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ 6a-ΠΈ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π°Π»ΠΊΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΠ»ΡŽΡ‡Π΅Π²ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄ΠΈΠ°Ρ‚Π° 5 Π°Π½ΠΈΠ»ΠΈΠ΄Π°ΠΌΠΈ хлоруксусной кислоты Π² присутствии основных ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ². Чистоту синтСзированных соСдинСний ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π’Π‘Π₯. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° синтСзированных соСдинСний Π±Ρ‹Π»Π° Π΄ΠΎΠΊΠ°Π·Π°Π½Π° Π΄Π°Π½Π½Ρ‹ΠΌΠΈ элСмСнтного Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ ЯМР-спСктров. Π’ ЯМР-спСктрах Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ алкилирования Π±Ρ‹Π» Π΄ΠΎΠΊΠ°Π·Π°Π½ исчСзновСниСм химичСского сдвига ΠΌΠ΅Ρ€ΠΊΠ°ΠΏΡ‚ΠΎΠ³Ρ€ΡƒΠΏΠΏΡ‹. ВсС соСдинСния – ΠΊΠ°ΠΊ ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄ΠΈΠ°Ρ‚, Ρ‚Π°ΠΊ ΠΈ Ρ†Π΅Π»Π΅Π²Ρ‹Π΅ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ содСрТат Π² спСктрах ПМР-сигналы ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ² систСмы циклогСксана Π² Π²ΠΈΠ΄Π΅ Π΄Π²ΡƒΡ… ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ»Π΅Ρ‚ΠΎΠ² ΠΎΠΊΠΎΠ»ΠΎ 2,80 ΠΌ.Π΄. (БН) ΠΈ ΠΏΡ€ΠΈ 1,92-1,11 ΠΌ.Π΄. (БН2)5 ΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ² 4-Π°ΠΌΠΈΠ½ΠΎΠ³Ρ€ΡƒΠΏΠΏΡ‹ Π² Π²ΠΈΠ΄Π΅ синглСтного сигнала ΠΏΡ€ΠΈ 5,92-5,87 ΠΌ.Π΄. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² фармакологичСской активности с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π° (ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° PASS). Π‘Ρ€Π΅Π΄ΠΈ Π²ΠΈΠ΄ΠΎΠ² дСйствия, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ вСроятными для Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΈΠ· синтСзированных вСщСств, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ Π»ΠΈΠ³Π°Π·Ρ‹, агонист ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ€ΠΎΠ½Π°, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΌ являСтся Π°Π½Ρ‚ΠΈΠ³ΠΈΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠ²Π½ΠΎΠ΅, антагонист Π³ΠΎΡ€ΠΌΠΎΠ½Π° Ρ‰ΠΈΡ‚ΠΎΠ²ΠΈΠ΄Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹, сСдативноС, противовирусноС (Pa = 0,554-0,729). Π’ соотвСтствии с ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΎΠΌ ΠΈ логичСским Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ синтСзированныС вСщСства Π±ΡƒΠ΄ΡƒΡ‚ ΠΈΠ·ΡƒΡ‡Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ противовирусныС срСдства.Описано синтСз сСрії Π½ΠΎΠ²ΠΈΡ… 4-Ρ„Π΅Π½Ρ–Π»-5-циклогСксил-1,2,4-Ρ‚Ρ€ΠΈΠ°Π·ΠΎΠ»(4Н)-3-Ρ–Π» Ρ‚Ρ–ΠΎΠ°Ρ†Π΅Ρ‚Π°Π½Ρ–Π»Ρ–Π΄Ρ–Π². ΠšΠ»ΡŽΡ‡ΠΎΠ²ΠΈΠΉ Ρ–Π½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄Ρ–Π°Ρ‚ – 4-Ρ„Π΅Π½Ρ–Π»-5-циклогСксил-3- ΠΌΠ΅Ρ€ΠΊΠ°ΠΏΡ‚ΠΎ-1,2,4-Ρ‚Ρ€ΠΈΠ°Π·ΠΎΠ»(4H) синтСзований, виходячи Π· циклогСксанкарбонової кислоти Ρ‡Π΅Ρ€Π΅Π· Ρ—Ρ— ΠΌΠ΅Ρ‚ΠΈΠ»ΠΎΠ²ΠΈΠΉ СстСр, Π΄Π°Π»Ρ– – Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΈΠΉ Π³Ρ–Π΄Ρ€Π°Π·ΠΈΠ΄ Ρ– ΠΊΠ°Π»Ρ–ΠΉ 3-циклогСксилдитіокарбазат після Ρ†ΠΈΠΊΠ»Ρ–Π·Π°Ρ†Ρ–Ρ— Π· Π³Ρ–Π΄Ρ€Π°Π·ΠΈΠ½ Π³ΠΈΠ΄Ρ€Π°Ρ‚ΠΎΠΌ. Π¦Ρ–Π»ΡŒΠΎΠ²Ρ– ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈ Π±ΡƒΠ»ΠΈ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– алкілуванням ΠΊΠ»ΡŽΡ‡ΠΎΠ²ΠΎΠ³ΠΎ Ρ–Π½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄Ρ–Π°Ρ‚Ρƒ Π°Π½Ρ–Π»Ρ–Π΄Π°ΠΌΠΈ Ρ…Π»ΠΎΡ€ΠΎΡ†Ρ‚ΠΎΠ²ΠΎΡ— кислоти Π² присутності основних ΠΊΠ°Ρ‚Π°Π»Ρ–Π·Π°Ρ‚ΠΎΡ€Ρ–Π². Чистоту синтСзованих сполук ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽΠ²Π°Π»ΠΈ Π·Π° допомогою Π’Π¨Π₯. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° синтСзованих сполук Π±ΡƒΠ»Π° Π΄ΠΎΠ²Π΅Π΄Π΅Π½Π° Π΄Π°Π½ΠΈΠΌΠΈ Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»Ρ–Π·Ρƒ Ρ‚Π° ЯМР-спСктрів. Π£ ЯМР-спСктрах Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ алкілування Π±ΡƒΠ² Π΄ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΉ Π·Π° зникнСнням Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ зсуву ΠΌΠ΅Ρ€ΠΊΠ°ΠΏΡ‚ΠΎΠ³Ρ€ΡƒΠΏΠΈ. Всі сполуки – як Ρ–Π½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄Ρ–Π°Ρ‚, Ρ‚Π°ΠΊ Ρ– Ρ†Ρ–Π»ΡŒΠΎΠ²Ρ– ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈ ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ Ρƒ спСктрах ПМР-сигнали ΠΏΡ€ΠΎΡ‚ΠΎΠ½Ρ–Π² систСми циклогСксану Ρƒ вигляді Π΄Π²ΠΎΡ… ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ»Π΅Ρ‚Ρ–Π² біля 2,80 ΠΌ.Ρ‡. (БН) Ρ‚Π° ΠΏΡ€ΠΈ 1,92-1,11 ΠΌ.Ρ‡. (БН2)5 Ρ– ΠΏΡ€ΠΎΡ‚ΠΎΠ½Ρ–Π² 4-Π°ΠΌΡ–Π½ΠΎΠ³Ρ€ΡƒΠΏΠΈ Ρƒ вигляді синглСтного сигналу ΠΏΡ€ΠΈ 5,92-5,87 ΠΌ.Π΄. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½Ρ” прогнозування ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΈΡ… Π²ΠΈΠ΄Ρ–Π² Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— активності Π·Π° допомогою ΠΊΠΎΠΌΠΏβ€™ΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Ρƒ (ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ° PASS). Π‘Π΅Ρ€Π΅Π΄ Π²ΠΈΠ΄Ρ–Π² Π΄Ρ–Ρ—, які Ρ” Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆ ΠΉΠΌΠΎΠ²Ρ–Ρ€Π½ΠΈΠΌΠΈ для дСяких Π· синтСзованих Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½, Ρ‚Π°ΠΊΡ– як Ρ–Π½Π³Ρ–Π±Ρ–Ρ‚ΠΎΡ€ Π»Ρ–Π³Π°Π·ΠΈ, агоніст Ρ–Π½Ρ‚Π΅Ρ€Ρ„Π΅Ρ€ΠΎΠ½Ρƒ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎΡŽ Ρ” Π°Π½Ρ‚ΠΈΠ³Ρ–ΠΏΠ΅Ρ€Ρ‚Π΅Π½Π·ΠΈΠ²Π½Π°, антагоніст Π³ΠΎΡ€ΠΌΠΎΠ½Ρƒ Ρ‰ΠΈΡ‚ΠΎΠΏΠΎΠ΄Ρ–Π±Π½ΠΎΡ— Π·Π°Π»ΠΎΠ·ΠΈ, сСдативна, противірусна (Pa = 0,554-0,729). Π’Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ Π΄ΠΎ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Ρƒ Ρ– Π»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»Ρ–Π·Ρƒ синтСзовані Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ΠΈ Π±ΡƒΠ΄ΡƒΡ‚ΡŒ вивчатися як ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΠΉΠ½Ρ– противірусні засоби

    ЦілСспрямований синтСз ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΈΡ… ΠΏΡ€ΠΎΡ‚ΠΈΠΏΡƒΡ…Π»ΠΈΠ½Π½ΠΈΡ… субстанцій Π² ряду ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… 3-ΠΌΠ΅Ρ€ΠΊΠ°ΠΏΡ‚ΠΎ-4-(1Н-ΠΏΡ–Ρ€ΠΎΠ»-1-Ρ–Π»)-5-циклогСксил-1,2,4-Ρ‚Ρ€ΠΈΠ°Π·ΠΎΠ»Ρƒ(4H)

    Get PDF
    Synthesis of the series of new 4-(1H-pyrrol-1-yl)-5-cyclohexyl-1,2,4-triazole(4H)-3-yl thioacetanilides from 4-amino-5-cyclohexyl-1,2,4-triazole(4H)-3-yl thioacetanilides previously synthesized is described. The target products 3a-z have been obtained by Paal-Knorre pyrrole condensation of the initial aminocompounds 1 with 2,5-dimethoxytetrahydrofuran (2) in the acetic acid medium. The structure of the substances synthesized has been proven by elemental analysis and NMR spectra data. All compounds synthesized contain signals of the cyclohexane system protons as two multiplets in their NMR spectra at 2.39-2.33 ppm (methyne proton) and 1.76-1.13 ppm (cyclohexyl methylene groups protons). Unlike the starting compounds (1) the end products (3a-z) have no signal of 4-aminogroup proton as a singlet in the spectra at 5.87-5.92 ppm. Instead of it, signals of the pyrrole ring are present as two triplets at 7-20-7.17 and 6.32-6.29 ppm. Among activities being more probable for the substances synthesized due to preliminary PASS-prognosis were inhibition of MAO and some enzymes (Pa = 0.554-0.729). Compound (3w) was selected by the National Cancer Institute (NCI) for in vitro screening on different tumour cell lines. As result of this investigation we have noted that, unfortunately, substance 3w is not an effective inhibitor of tumour cells in the dose studied, in particular the growth percent for leukemia cells for more sensitive lines is 68.48 (RPMI-8226); 69.30 (HL-60(TB)); for non-small cell lung cancer – 63.06 (HOP-92); for melanoma – 47.82 (SK-MEL-5); 67.37 (UACC-62); for renal cancer – 56.66 (UO-31). Sensitivity of all cancer cell lines for the colon, CNS, ovarian, prostate and breast cancer was approximately at the control level.Описан синтСз сСрии Π½ΠΎΠ²Ρ‹Ρ… 4-(1Н-ΠΏΠΈΡ€Ρ€ΠΎΠ»-1-ΠΈΠ»)-5-циклогСксил-1,2,4-Ρ‚Ρ€ΠΈΠ°Π·ΠΎΠ»Π°(4H)-3-ΠΈΠ»Ρ‚ΠΈΠΎΠ°Ρ†Π΅Ρ‚Π°Π½ΠΈΠ»ΠΈΠ΄ΠΎΠ² ΠΈΠ· ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π°Π½Π΅Π΅ 4-Π°ΠΌΠΈΠ½ΠΎ-5-циклогСксил-1,2,4-Ρ‚Ρ€ΠΈΠ°Π·ΠΎΠ»(4H)-3-ΠΈΠ»ΠΈΠΎΠ°Ρ†Π΅Ρ‚Π°Π½ΠΈΠ»ΠΈΠ΄ΠΎΠ². Π¦Π΅Π»Π΅Π²Ρ‹Π΅ вСщСства 3a-z ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΏΠΈΡ€Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ кондСнсациСй Паля-ΠšΠ½ΠΎΡ€Ρ€Π° ΠΈΠ· исходных аминосоСдинСний 1 ΠΈ 2,5-Π΄ΠΈ-мСтокситСтрагидрофурана (2) Π² срСдС уксусной кислоты. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° синтСзированных вСщСств Π΄ΠΎΠΊΠ°Π·Π°Π½Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ элСмСнтного Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ Π΄Π°Π½Π½Ρ‹Ρ… спСктров ЯМР 1Н. ВсС синтСзированныС соСдинСния содСрТат Π² спСктрах ЯМР 1Н сигналы систСмы циклогСксановых ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ² Π² Π²ΠΈΠ΄Π΅ Π΄Π²ΡƒΡ… ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ»Π΅Ρ‚ΠΎΠ² ΠΏΡ€ΠΈ 2,39-2,33 ΠΌ.Π΄. (ΠΌΠ΅Ρ‚ΠΈΠ½ΠΎΠ²Ρ‹Π΅ ΠΏΡ€ΠΎΡ‚ΠΎΠ½Ρ‹) ΠΈ 1,76-1,13 ΠΌ.Π΄ (ΠΏΡ€ΠΎΡ‚ΠΎΠ½Ρ‹ ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½ΠΎΠ²Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ циклогСксила). Π’ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ исходных соСдинСний (1) ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ (3Π°-z) Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ Π² спСктрах сигнала ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° 4-Π°ΠΌΠΈΠ½ΠΎΠ³Ρ€ΡƒΠΏΠΏΡ‹ Π² Π²ΠΈΠ΄Π΅ синглСта ΠΏΡ€ΠΈ 5,87-5,92 ΠΌ.Π΄. ВмСсто этого ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ сигналы ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ² ΠΏΠΈΡ€Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ»ΡŒΡ†Π° Π² Π²ΠΈΠ΄Π΅ Π΄Π²ΡƒΡ… Ρ‚Ρ€ΠΈΠΏΠ»Π΅Ρ‚ΠΎΠ² ΠΏΡ€ΠΈ 7-20-7.17 ΠΈ 6.32-6.29 ΠΌ.Π΄. Π‘Ρ€Π΅Π΄ΠΈ Π²ΠΈΠ΄ΠΎΠ² активности, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±Ρ‹Π»ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ вСроятны для синтСзированных вСщСств Π² соотвСтствии с ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ PASS-ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΎΠΌ, Π±Ρ‹Π»ΠΎ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ МАО ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² (Π Π° = 0,554-0,729). Π‘ΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ (3w) Π±Ρ‹Π»ΠΎ Π²Ρ‹Π±Ρ€Π°Π½ΠΎ ΠΠ°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ институтом Ρ€Π°ΠΊΠ° (NCI) для скрининга in vitro Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… линиях Ρ€Π°ΠΊΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ этого исслСдования ΠΌΡ‹ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ вСщСство 3w, ΠΊ соТалСнию, Π½Π΅ являСтся эффСктивным ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠΌ роста ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² ΠΈΠ·ΡƒΡ‡Π°Π΅ΠΌΠΎΠΉ Π΄ΠΎΠ·Π΅. Π’ частности, ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ роста Π»Π΅ΠΉΠΊΠΎΠ·Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ для Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ Π±Ρ‹Π»: 68,48 (RPMI-8226); 69,30 (HL-60 (Π’Π’)); для Π½Π΅ΠΌΠ΅Π»ΠΊΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ° Π»Π΅Π³ΠΊΠΎΠ³ΠΎ – 63,06 (HОР-92); для ΠΌΠ΅Π»Π°Π½ΠΎΠΌΡ‹ – 47,82 (SK-MEL-5); 67,37(UACC-62); для Ρ€Π°ΠΊΠ° ΠΏΠΎΡ‡ΠΊΠΈ – 56,66 (UО-31). Π§ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ всСх Π»ΠΈΠ½ΠΈΠΉ Ρ€Π°ΠΊΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ толстой кишки, ЦНБ, яичников, простаты ΠΈ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ Π±Ρ‹Π»Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ контроля.Описано синтСз сСрії Π½ΠΎΠ²ΠΈΡ… 4-(1Н-ΠΏΡ–Ρ€ΠΎΠ»-1-Ρ–Π»)-5-циклогСксил-1,2,4-Ρ‚Ρ€ΠΈΠ°Π·ΠΎΠ»(4H)-3-Ρ–Π»Ρ‚Ρ–ΠΎΠ°Ρ†Π΅Ρ‚Π°Π½Ρ–Π»Ρ–Π΄Ρ–Π² Π· ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡ… Ρ€Π°Π½Ρ–ΡˆΠ΅ 4-Π°ΠΌΡ–Π½ΠΎ-5-циклогСксил-1,2,4-Ρ‚Ρ€ΠΈΠ°Π·ΠΎΠ»(4H)-3-Ρ–Π»Ρ–ΠΎΠ°Ρ†Π΅Ρ‚Π°Π½Ρ–Π»Ρ–Π΄Ρ–Π². Π¦Ρ–Π»ΡŒΠΎΠ²Ρ– Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ΠΈ 3a-z ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– ΠΏΡ–Ρ€ΠΎΠ»ΡŒΠ½ΠΎΡŽ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°Ρ†Ρ–Ρ”ΡŽ Пааля-ΠšΠ½ΠΎΡ€Ρ€Π° Π· Π²ΠΈΡ…Ρ–Π΄Π½ΠΈΡ… аміносполук 1 Ρ‚Π° 2,5-димСтокситСтрагідрофурану (2) Π² сСрСдовищі ΠΎΡ†Ρ‚ΠΎΠ²ΠΎΡ— кислоти. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° синтСзованих Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ Π΄ΠΎΠ²Π΅Π΄Π΅Π½Π° Π·Π° допомогою Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»Ρ–Π·Ρƒ Ρ– Π΄Π°Π½ΠΈΡ… спСктрів ЯМР 1Н. Всі синтСзовані сполуки ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ Ρƒ спСктрах ЯМР 1Н сигнали систСми циклогСксанових ΠΏΡ€ΠΎΡ‚ΠΎΠ½Ρ–Π² Ρƒ вигляді Π΄Π²ΠΎΡ… ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ»Π΅Ρ‚Ρ–Π² ΠΏΡ€ΠΈ 2,39-2,33 ΠΌ.Ρ‡. (ΠΌΠ΅Ρ‚ΠΈΠ½ΠΎΠ²Ρ– ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΈ) Ρ‚Π° 1,76-1,13 ΠΌ.Ρ‡. (ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΈ ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½ΠΎΠ²ΠΈΡ… Π³Ρ€ΡƒΠΏ циклогСксилу). На Π²Ρ–Π΄ΠΌΡ–Π½Ρƒ Π²Ρ–Π΄ Π²ΠΈΡ…Ρ–Π΄Π½ΠΈΡ… сполук (1) ΠΊΡ–Π½Ρ†Π΅Π²Ρ– ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈ (3Π°-z) Π½Π΅ ΠΌΠ°ΡŽΡ‚ΡŒ Ρƒ спСктрах сигналу ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° 4 – Π°ΠΌΡ–Π½ΠΎΠ³Ρ€ΡƒΠΏΠΈ Ρƒ вигляді синглСту ΠΏΡ€ΠΈ 5,87-5,92 ΠΌ.Ρ‡.Π—Π°ΠΌΡ–ΡΡ‚ΡŒ Ρ†ΡŒΠΎΠ³ΠΎ присутні сигнали ΠΏΡ€ΠΎΡ‚ΠΎΠ½Ρ–Π² ΠΏΡ–Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΡ–Π»ΡŒΡ†Ρ Ρƒ вигляді Π΄Π²ΠΎΡ… Ρ‚Ρ€ΠΈΠΏΠ»Π΅Ρ‚Ρ–Π² ΠΏΡ€ΠΈ 7-20-7.17 Ρ– 6.32-6.29 ΠΌ.Ρ‡. Π‘Π΅Ρ€Π΅Π΄ Π²ΠΈΠ΄Ρ–Π² активності, які Π±ΡƒΠ»ΠΈ Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆ ΠΉΠΌΠΎΠ²Ρ–Ρ€Π½Ρ– для синтСзованих Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ Π΄ΠΎ ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΠ³ΠΎ PASS-ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Ρƒ, Π±ΡƒΠ»ΠΈ інгібування МАО Ρ– дСяких Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ–Π² (Π Π° = 0,554-0,729). Π‘ΠΏΠΎΠ»ΡƒΠΊΡƒ (3w) Π±ΡƒΠ»ΠΎ ΠΎΠ±Ρ€Π°Π½ΠΎ ΠΠ°Ρ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΠΌ інститутом Ρ€Π°ΠΊΡƒ (NCI) для скринінгу in vitro Π½Π° Ρ€Ρ–Π·Π½ΠΈΡ… лініях Ρ€Π°ΠΊΠΎΠ²ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½. Π£ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ– Ρ†ΡŒΠΎΠ³ΠΎ дослідТСння ΠΌΠΈ Π²Ρ–Π΄Π·Π½Π°Ρ‡ΠΈΠ»ΠΈ, Ρ‰ΠΎ Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½Π° 3w, Π½Π° Таль, Π½Π΅ Ρ” Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌ Ρ–Π½Π³Ρ–Π±Ρ–Ρ‚ΠΎΡ€ΠΎΠΌ росту ΠΏΡƒΡ…Π»ΠΈΠ½Π½ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ Ρƒ дослідТуваній Π΄ΠΎΠ·Ρ–. Π—ΠΎΠΊΡ€Π΅ΠΌΠ°, відсоток росту Π»Π΅ΠΉΠΊΠΎΠ·Π½ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ для Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆ Ρ‡ΡƒΡ‚Π»ΠΈΠ²ΠΈΡ… Π»Ρ–Π½Ρ–ΠΉ Π±ΡƒΠ²: 68,48 (RPMI-8226); 69,30 (HL-60 (Π’Π’)); для Π½Π΅Π΄Ρ€Ρ–Π±Π½ΠΎΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΡƒ Π»Π΅Π³Π΅Π½Ρ–Π² – 63,06 (HОР-92); для ΠΌΠ΅Π»Π°Π½ΠΎΠΌΠΈ – 47,82 (SK-MEL-5); 67,37 (UACC-62); для Ρ€Π°ΠΊΡƒ Π½ΠΈΡ€ΠΊΠΈ – 56,66 (UО-31).Π§ΡƒΡ‚Π»ΠΈΠ²Ρ–ΡΡ‚ΡŒ усіх Π»Ρ–Π½Ρ–ΠΉ Ρ€Π°ΠΊΠΎΠ²ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ товстої кишки, ЦНБ, яєчників, простати Ρ‚Π° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΡ— Π·Π°Π»ΠΎΠ·ΠΈ Π±ΡƒΠ² ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·Π½ΠΎ Π½Π° Ρ€Ρ–Π²Π½Ρ– ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽ

    Direct and inverse problems to study the process of ion solutions ltering in porous medium

    Get PDF
    Solution of actual problem associated with technological process of ltering and dehydrating liquid solutions from ne-dispersed particles is discussed in the paper. Technological process is carried out in the dehydration and puri cation of chemical solutions, drinking water, pharmaceuticals, liquid fuels, products for public use, etc. A mathematical model has been developed to study the process, to determine the basic parameters of the object and the operating modes of the ltering aggregates to make management decisions; this model may take into account di erent operating modes of the ltering aggregate and physical-chemical properties of solutions. In the paper it is noted that when investigating the ltering process, it is rather di cult to determine the main parameters of the object under consideration and their ranges of changes to control the operating objects. Collecting data takes a lot of time; to conduct a series of experiments in laboratory conditions takes a lot of labor power and time; it is di cult to nd the relationship between the parameters of the lter and technological process based on a limited experimental sampling. Urgent problems of determining the basic parameters and their ranges of changes leading to a decrease in the loss of valuable raw materials, an increase in lters performance, an improvement in the quality of the resulting product, etc. are solved in the paper. Based on the analysis of the conducted numerical experiments, conclusions are drawn that serve as the basis for making appropriate management decisions

    Demonstration of an Integrated Pest Management Program for Wheat in Tajikistan

    Get PDF
    Citation: Landis, D. A., Saidov, N., Jaliov, A., El Bouhssini, M., Kennelly, M., Bahlai, C., . . . Maredia, K. (2016). Demonstration of an Integrated Pest Management Program for Wheat in Tajikistan. Journal of Integrated Pest Management, 7(1), 9. doi:10.1093/jipm/pmw010Citation: Landis, D., Saidav, N., . . . & Maredia, K. (2016). Demonstration of an Integrated Pest Management Program for Wheat in Tajikistan. Journal of Integrated Pest Management, 7(1), 1-9. https://doi.org/10.1093/jipm/pmw010Wheat is an important food security crop in central Asia but frequently suffers severe damage and yield losses from insect pests, pathogens, and weeds. With funding from the United States Agency for International Development, a team of scientists from three U.S. land-grant universities in collaboration with the International Center for Agricultural Research in Dry Areas and local institutions implemented an integrated pest management (IPM) demonstration program in three regions of Tajikistan from 2011 to 2014. An IPM package was developed and demonstrated in farmer fields using a combination of crop and pest management techniques including cultural practices, host plant resistance, biological control, and chemical approaches. The results from four years of demonstration/research indicated that the IPM package plots almost universally had lower pest abundance and damage and higher yields and were more profitable than the farmer practice plots. Wheat stripe rust infestation ranged from 30% to over 80% in farmer practice plots, while generally remaining below 10% in the IPM package plots. Overall yield varied among sites and years but was always at least 30% to as much as 69% greater in IPM package plots. More than 1,500 local farmers-40% women-were trained through farmer field schools and field days held at the IPM demonstration sites. In addition, students from local agricultural universities participated in on-site data collection. The IPM information generated by the project was widely disseminated to stakeholders through peer-reviewed scientific publications, bulletins and pamphlets in local languages, and via Tajik national television

    Study of discontinuation issues in the blood service

    Get PDF
    The article examines the issue of suspension from blood donation and discusses their causes in persons who applied to blood service institutions. It was revealed that for 3 years, on average, 13% of those who applied were not allowed to donate. Of the total ineligible, 10% were temporarily suspended from donating. The main part of them - 8% due to low hemoglobin levels

    Slow-roll inflation in (R+R*4) gravity

    Full text link
    We reconsider the toy-model of topological inflation, based on the R*4-modified gravity. By using its equivalence to the certain scalar-tensor gravity model in four space-time dimensions, we compute the inflaton scalar potential and investigate a possibility of inflation. We confirm the existence of the slow-roll inflation with an exit. However, the model suffers from the eta-problem that gives rise to the unacceptable value of the spectral index n_s of scalar perturbations.Comment: 12 pages, 3 figures, LaTeX, misprints corrected and references update

    Molecular docking, ADMET study and in vivo pharmacological research of N-(3,4-dimetoxyphenyl)-2-{[2-methyl-6-(pyridine-2-yl)-pyrimidin-4-yl]thio}acetamide as a promising anticonvulsant

    Get PDF
    The search for new anticonvulsants for epilepsy treatment with higher efficacy and better tolerability remains important. The aim of the present research was an in silico and in vivo pharmacological study of N-(3,4-dimethoxyphenyl)-2-((2-methyl-6-(pyridin-2-yl)pyrimidin-4-yl)thio)acetamide (Epirimil) as a promising anticonvulsan

    Influence of nettle powder addition on bread quality indicators

    Get PDF
    This article reflects the results of a study on the effect of nettle leaf powder on the physicochemical and organoleptic characteristics of wheat bread. Nettle leaves is a good source of proteins, fibers, minerals and other bioactive compounds and it could be an ideal ingredient for improving the nutritional value of bread and bakery products. Nettle leaf powder was mixed with wheat flour in different ratios: 1 %, 3 % and 5 % to prepare bread samples. The results showed a significant increase in the protein, ash and fiber content of bread. The specific volume of the bread decreased as the level of nettle leaf powder increased due to a decrease in the gluten content of the mixture and due to the interaction between dietary fiber components, water and gluten. Substitutions of 1 %, 3 % and 5 % give parameter values at least the same as the control sample and give acceptable indicators of bread quality in terms of specific volume and organoleptic properties

    Electromagnetic torque of valve engine with nonmagnetic anchor

    Full text link
    ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ расчСтныС ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ элСктромагнитной ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° сСкции Π²Π΅Π½Ρ‚ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ двигатСля с Π½Π΅ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌ якорСм Π½Π° ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ ΠΊΠΎΠΌΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ Π΅Π΅ ΠΎΠ±Ρ‰Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ 120-градусном Π·Π°ΠΊΠΎΠ½Π΅ ΠΊΠΎΠΌΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ. ΠŸΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° ΠΏΡƒΠ»ΡŒΡΠ°Ρ†ΠΈΠΉ элСктромагнитного ΠΌΠΎΠΌΠ΅Π½Ρ‚Π°, обусловлСнных дискрСтной ΠΊΠΎΠΌΠΌΡƒΡ‚Π°Ρ†ΠΈΠ΅ΠΉ сСкций якорной ΠΎΠ±ΠΌΠΎΡ‚ΠΊΠΈ.The ratios for the electromagnetic moment calculation on the switching period in the section of the BLDC with a non-magnetic armature are obtained and general expression of the electromagnetic force at 120-degree switching law is determined. The estimation of the electromagnetic force ripple caused by discrete switching in the armature winding sections is performed
    • …
    corecore