13 research outputs found

    Regulation of immunity during visceral Leishmania infection

    Get PDF
    Unicellular eukaryotes of the genus Leishmania are collectively responsible for a heterogeneous group of diseases known as leishmaniasis. The visceral form of leishmaniasis, caused by L. donovani or L. infantum, is a devastating condition, claiming 20,000 to 40,000 lives annually, with particular incidence in some of the poorest regions of the world. Immunity to Leishmania depends on the development of protective type I immune responses capable of activating infected phagocytes to kill intracellular amastigotes. However, despite the induction of protective responses, disease progresses due to a multitude of factors that impede an optimal response. These include the action of suppressive cytokines, exhaustion of specific T cells, loss of lymphoid tissue architecture and a defective humoral response. We will review how these responses are orchestrated during the course of infection, including both early and chronic stages, focusing on the spleen and the liver, which are the main target organs of visceral Leishmania in the host. A comprehensive understanding of the immune events that occur during visceral Leishmania infection is crucial for the implementation of immunotherapeutic approaches that complement the current anti-Leishmania chemotherapy and the development of effective vaccines to prevent disease.The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement No.602773 (Project KINDRED). VR is supported by a post-doctoral fellowship granted by the KINDReD consortium. RS thanks the Foundation for Science and Technology (FCT) for an Investigator Grant (IF/00021/2014). This work was supported by grants to JE from ANR (LEISH-APO, France), Partenariat Hubert Curien (PHC) (program Volubilis, MA/11/262). JE acknowledges the support of the Canada Research Chair Program

    Immunology of canine leishmaniasis

    No full text
    The role of dogs as the main reservoir of visceral leishmaniasis has led to an increased interest in the immune responses and in Leishmania antigens implicated in protective cellular immunity in canine visceral leishmaniasis. the primary goal is to control the prevalence of human disease. Immune responses in canine visceral leishmaniasis are reviewed. Cellular immune responses toward a Th1 subset mediated by IFN-gamma and TNF-alpha predominate in asymptomatic dogs exhibiting apparent resistance to visceral leishmaniasis. On the other hand, while the role of Th2 cytokines, such as IL-4 and IL-10, in symptomatic animals is still controversial, there is increasing evidence for a correlation of these cytokines with progressive disease. CD8(+) cytotoxic T cells seem also likely to be involved in resistance to visceral leishmaniasis. Several Leishmania antigens implicated in protective immune responses are described and some pivotal points for development of an effective vaccine against canine visceral leishmaniasis are discussed.Universidade Federal de São Paulo, Escola Paulista Med, Div Parasitol, Dept Microbiol Immunol & Parasitol, BR-04023062 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Div Parasitol, Dept Microbiol Immunol & Parasitol, BR-04023062 São Paulo, BrazilWeb of Scienc

    Parasite Burden in Hamsters Infected with Two Different Strains of Leishmania (Leishmania) infantum: “Leishman Donovan Units” versus Real-Time PCR

    Get PDF
    To develop and test new therapeutics and immune prophylaxis strategies for visceral leishmaniasis (VL), understanding tissue parasitism evolution after experimental infection with Leishmania infantum is important. Experimental infection in a hamster model (Mesocricetus auratus) reproduces several typical aspects of canine and human VL that are closely related to the inoculum’s route. We quantified the parasitism in the liver and spleen of hamsters experimentally infected by various routes (intradermal, intraperitoneal, and intracardiac [IC]) and different strains of L. infantum (MHOM/BR/74/PP75 and Wild) and compared two different methodologies to evaluate tissue parasitism (Leishman Donovan units [LDU] and real-time qPCR). In addition, the quantification of specific total-IgG in the serum of uninfected and infected hamsters was determined by ELISA. The animals were followed for 1, 3, 6 and 9 months post-infection for survival analysis. We found that infection with the Wild strain by the IC route resulted in higher mortality. Positive antibody (IgG) responses were detected with higher peaks at 6 and 9 months in the IC group inoculated with PP75 strain. However, in animals infected with the Wild strain the IgG levels were elevated in all infected groups during all the time evaluated. We also observed by LDU analysis that the IC route lead to higher parasitism in the liver and spleen with both strains. Furthermore, qPCR showed higher sensitivity for identifying animals with low parasitic burden. In conclusion, qPCR can be useful for assessing parasitism in the spleen and liver of a hamster model infected with L. infantum independent of the route of infection, and this technique may become an essential tool for assessing parasite density in the hamster model after experimental treatment or immunization with potential vaccine candidates
    corecore