474 research outputs found

    Coupling rheology and segregation in granular flows

    Get PDF
    During the last fifteen years there has been a paradigm shift in the continuum modelling of granular materials; most notably with the development of rheological models, such as the μ(I) μ(I) -rheology (where μ μ is the friction and I is the inertial number), but also with significant advances in theories for particle segregation. This paper details theoretical and numerical frameworks (based on OpenFOAM) which unify these currently disconnected endeavours. Coupling the segregation with the flow, and vice versa, is not only vital for a complete theory of granular materials, but is also beneficial for developing numerical methods to handle evolving free surfaces. This general approach is based on the partially regularized incompressible μ(I) μ(I) -rheology, which is coupled to the gravity-driven segregation theory of Gray & Ancey (J. Fluid Mech., vol. 678, 2011, pp. 353–588). These advection–diffusion–segregation equations describe the evolving concentrations of the constituents, which then couple back to the variable viscosity in the incompressible Navier–Stokes equations. A novel feature of this approach is that any number of differently sized phases may be included, which may have disparate frictional properties. Further inclusion of an excess air phase, which segregates away from the granular material, then allows the complex evolution of the free surface to be captured simultaneously. Three primary coupling mechanisms are identified: (i) advection of the particle concentrations by the bulk velocity, (ii) feedback of the particle-size and/or frictional properties on the bulk flow field and (iii) influence of the shear rate, pressure, gravity, particle size and particle-size ratio on the locally evolving segregation and diffusion rates. The numerical method is extensively tested in one-way coupled computations, before the fully coupled model is compared with the discrete element method simulations of Tripathi & Khakhar (Phys. Fluids, vol. 23, 2011, 113302) and used to compute the petal-like segregation pattern that spontaneously develops in a square rotating drum

    Effect of laser pulse duration on ablation efficiency of hard bone in microseconds regime

    Get PDF
    The aim of the present study is to investigate the effect of laser pulse duration on ablation efficiency of hard bones. The bones were ablated using a microsecond pulsed Er-YAG laser. The laser wavelength was 2.94 μm and the repetition rate was 10Hz. Three samples of porcine femur were used and several areas were ablated with a fixed pulse energy of 280mJ and different pulse durations. The ablation procedure was applied during five seconds for all the experiments, therefore, the same amount of energy (14 J) was deposited in each trial. The ablation efficiency was determined by measuring the ablated volume per second for each experiment

    Isololiolide, a carotenoid metabolite isolated from the brown alga Cystoseira tamariscifolia, is cytotoxic and able to induce apoptosis in hepatocarcinoma cells through caspase-3 activation, decreased Bcl-2 levels, increased p53 expression and PARP cleavage

    Get PDF
    Background: Brown macroalgae have attracted attention because they display a wide range of biological activities, including antitumoral properties. In this study we isolated isololiolide from Cystoseira tamariscifolia for the first time.Purpose: To examine the therapeutical potential of isololiolide against tumor cell lines.Methods/Study design: The structure of the compound was established and confirmed by 1D and 2D NMR as well as HRMS spectral analysis. The in vitro cytotoxicity was analyzed by colorimetric 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide assay in tumoral as well as in non-tumoral cell lines. Cell cycle arrest and induction of apoptosis were assessed by flow cytometry. Alteration of expression levels in proteins important in the apoptotic cascade was analyzed by western blotting.Results: Isololiolidewas isolated for the first time from the brown macroalga C. tamariscifolia. Isololiolide exhibited significant cytotoxic activity against three human tumoral cell lines, namely hepatocarcinoma HepG2 cells, whereas no cytotoxicity was found in non-malignant MRC-5 and HFF-1 human fibroblasts. Isololiolide completely disrupted the HepG2 normal cell cycle and induced significant apoptosis. Moreover, western blot analysis showed that isololiolide altered the expression of proteins that are important in the apoptotic cascade, increasing PARP cleavage and p53 expression while decreasing procaspase-3 and Bcl-2 levels.Conclusion: Isololiolide isolated from C. tamariscifolia is able to exert a selective cytotoxic activity on hepatocarcinoma HepG2 cells as well as induce apoptosis through the modulation of apoptosis-related proteins. (C) 2016 Elsevier GmbH. All rights reserved

    Health promoting potential of herbal teas and tinctures from Artemisia campestris subsp maritima: from traditional remedies to prospective products

    Get PDF
    This work explored the biotechnological potential of the medicinal halophyte Artemisia campestris subsp. maritima (dune wormwood) as a source of health promoting commodities. For that purpose, infusions, decoctions and tinctures were prepared from roots and aerial-organs and evaluated for in vitro antioxidant, anti-diabetic and tyrosinase-inhibitory potential, and also for polyphenolic and mineral contents and toxicity. The dune wormwood extracts had high polyphenolic content and several phenolics were identified by ultra-high performance liquid chromatography-photodiode array-mass-spectrometry (UHPLC-PDA-MS). The main compounds were quinic, chlorogenic and caffeic acids, coumarin sulfates and dicaffeoylquinic acids; several of the identified phytoconstituents are here firstly reported in this A. campestris subspecies. Results obtained with this plant's extracts point to nutritional applications as mineral supplementary source, safe for human consumption, as suggested by the moderate to low toxicity of the extracts towards mammalian cell lines. The dune wormwood extracts had in general high antioxidant activity and also the capacity to inhibit a-glucosidase and tyrosinase. In summary, dune wormwood extracts are a significant source of polyphenolic and mineral constituents, antioxidants and a-glucosidase and tyrosinase inhibitors, and thus, relevant for different commercial segments like the pharmaceutical, cosmetic and/or food industries.FCT - Foundation for Science and Technology [CCMAR/Multi/04326/2013]; Portuguese National Budget; FCT [IF/00049/2012, SFRH/BD/94407/2013]; Research Foundation - Flanders (FWO) [12M8315N]info:eu-repo/semantics/publishedVersio

    Phenolic composition and antioxidant activity of Rocha pear and other pear cultivars: a comparative study

    Get PDF
    The phenolic profile and the antioxidant activity of Rocha pear, a Portuguese pear cultivar, were determined and compared with the commercially available pear varieties Cornice, Abate, General Leclerc and Passe Crassane. Phenolic composition of the methanolic extracts of these pears was determined by high performance liquid chromatography with diode array detection (HPLC-DAD), while antioxidant activities were evaluated using three complementary test systems: DPPH radical scavenging activity, ferric reducing power capacity and beta-carotene/linoleic acid bleaching assay. When compared to the studied varieties, Rocha pear (peel and flesh) presented the highest content of total phenolics. Among them, chlorogenic, syringic, ferulic and coumaric acids, arbutin and (-)-epicatechin were detected as major components. In addition, among the tested varieties, Rocha pear presented the best antioxidant activities in the DPPH and ferric reducing power assays.Associação Nacional de Produtores de Pêra Rocha; Fundação para a Ciência e Tecnologia (FCT
    • …
    corecore